Spaces:
Configuration error
Configuration error
import torch | |
from utils.flow_viz import flow_tensor_to_image | |
from .visualization import viz_depth_tensor | |
class Logger: | |
def __init__(self, lr_scheduler, | |
summary_writer, | |
summary_freq=100, | |
start_step=0, | |
img_mean=None, | |
img_std=None, | |
): | |
self.lr_scheduler = lr_scheduler | |
self.total_steps = start_step | |
self.running_loss = {} | |
self.summary_writer = summary_writer | |
self.summary_freq = summary_freq | |
self.img_mean = img_mean | |
self.img_std = img_std | |
def print_training_status(self, mode='train', is_depth=False): | |
if is_depth: | |
print('step: %06d \t loss: %.3f' % (self.total_steps, self.running_loss['total_loss'] / self.summary_freq)) | |
else: | |
print('step: %06d \t epe: %.3f' % (self.total_steps, self.running_loss['epe'] / self.summary_freq)) | |
for k in self.running_loss: | |
self.summary_writer.add_scalar(mode + '/' + k, | |
self.running_loss[k] / self.summary_freq, self.total_steps) | |
self.running_loss[k] = 0.0 | |
def lr_summary(self): | |
lr = self.lr_scheduler.get_last_lr()[0] | |
self.summary_writer.add_scalar('lr', lr, self.total_steps) | |
def add_image_summary(self, img1, img2, flow_preds=None, flow_gt=None, mode='train', | |
is_depth=False, | |
): | |
if self.total_steps % self.summary_freq == 0: | |
if is_depth: | |
img1 = self.unnormalize_image(img1.detach().cpu()) # [3, H, W], range [0, 1] | |
img2 = self.unnormalize_image(img2.detach().cpu()) | |
concat = torch.cat((img1, img2), dim=-1) # [3, H, W*2] | |
self.summary_writer.add_image(mode + '/img', concat, self.total_steps) | |
else: | |
img_concat = torch.cat((img1[0].detach().cpu(), img2[0].detach().cpu()), dim=-1) | |
img_concat = img_concat.type(torch.uint8) # convert to uint8 to visualize in tensorboard | |
flow_pred = flow_tensor_to_image(flow_preds[-1][0]) | |
forward_flow_gt = flow_tensor_to_image(flow_gt[0]) | |
flow_concat = torch.cat((torch.from_numpy(flow_pred), | |
torch.from_numpy(forward_flow_gt)), dim=-1) | |
concat = torch.cat((img_concat, flow_concat), dim=-2) | |
self.summary_writer.add_image(mode + '/img_pred_gt', concat, self.total_steps) | |
def add_depth_summary(self, depth_pred, depth_gt, mode='train'): | |
# assert depth_pred.dim() == 2 # [H, W] | |
if self.total_steps % self.summary_freq == 0 or 'val' in mode: | |
pred_viz = viz_depth_tensor(depth_pred.detach().cpu()) # [3, H, W] | |
gt_viz = viz_depth_tensor(depth_gt.detach().cpu()) | |
concat = torch.cat((pred_viz, gt_viz), dim=-1) # [3, H, W*2] | |
self.summary_writer.add_image(mode + '/depth_pred_gt', concat, self.total_steps) | |
def unnormalize_image(self, img): | |
# img: [3, H, W], used for visualizing image | |
mean = torch.tensor(self.img_mean).view(3, 1, 1).type_as(img) | |
std = torch.tensor(self.img_std).view(3, 1, 1).type_as(img) | |
out = img * std + mean | |
return out | |
def push(self, metrics, mode='train', is_depth=False, ): | |
self.total_steps += 1 | |
self.lr_summary() | |
for key in metrics: | |
if key not in self.running_loss: | |
self.running_loss[key] = 0.0 | |
self.running_loss[key] += metrics[key] | |
if self.total_steps % self.summary_freq == 0: | |
self.print_training_status(mode, is_depth=is_depth) | |
self.running_loss = {} | |
def write_dict(self, results): | |
for key in results: | |
tag = key.split('_')[0] | |
tag = tag + '/' + key | |
self.summary_writer.add_scalar(tag, results[key], self.total_steps) | |
def close(self): | |
self.summary_writer.close() | |