Spaces:
Configuration error
Configuration error
from __future__ import division | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
import scipy.sparse | |
import math | |
from pathlib import Path | |
data_path = Path(__file__).parent / "data" | |
from comfy.model_management import get_torch_device | |
from wrapper_for_mps import sparse_to_dense | |
device = get_torch_device() | |
class SparseMM(torch.autograd.Function): | |
"""Redefine sparse @ dense matrix multiplication to enable backpropagation. | |
The builtin matrix multiplication operation does not support backpropagation in some cases. | |
""" | |
def forward(ctx, sparse, dense): | |
ctx.req_grad = dense.requires_grad | |
ctx.save_for_backward(sparse) | |
return torch.matmul(sparse, dense) | |
def backward(ctx, grad_output): | |
grad_input = None | |
sparse, = ctx.saved_tensors | |
if ctx.req_grad: | |
grad_input = torch.matmul(sparse.t(), grad_output) | |
return None, grad_input | |
def spmm(sparse, dense): | |
sparse = sparse.to(device) | |
dense = dense.to(device) | |
return SparseMM.apply(sparse, dense) | |
def gelu(x): | |
"""Implementation of the gelu activation function. | |
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
class BertLayerNorm(torch.nn.Module): | |
def __init__(self, hidden_size, eps=1e-12): | |
"""Construct a layernorm module in the TF style (epsilon inside the square root). | |
""" | |
super(BertLayerNorm, self).__init__() | |
self.weight = torch.nn.Parameter(torch.ones(hidden_size)) | |
self.bias = torch.nn.Parameter(torch.zeros(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, x): | |
u = x.mean(-1, keepdim=True) | |
s = (x - u).pow(2).mean(-1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
return self.weight * x + self.bias | |
class GraphResBlock(torch.nn.Module): | |
""" | |
Graph Residual Block similar to the Bottleneck Residual Block in ResNet | |
""" | |
def __init__(self, in_channels, out_channels, mesh_type='body'): | |
super(GraphResBlock, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.lin1 = GraphLinear(in_channels, out_channels // 2) | |
self.conv = GraphConvolution(out_channels // 2, out_channels // 2, mesh_type) | |
self.lin2 = GraphLinear(out_channels // 2, out_channels) | |
self.skip_conv = GraphLinear(in_channels, out_channels) | |
# print('Use BertLayerNorm in GraphResBlock') | |
self.pre_norm = BertLayerNorm(in_channels) | |
self.norm1 = BertLayerNorm(out_channels // 2) | |
self.norm2 = BertLayerNorm(out_channels // 2) | |
def forward(self, x): | |
trans_y = F.relu(self.pre_norm(x)).transpose(1,2) | |
y = self.lin1(trans_y).transpose(1,2) | |
y = F.relu(self.norm1(y)) | |
y = self.conv(y) | |
trans_y = F.relu(self.norm2(y)).transpose(1,2) | |
y = self.lin2(trans_y).transpose(1,2) | |
z = x+y | |
return z | |
# class GraphResBlock(torch.nn.Module): | |
# """ | |
# Graph Residual Block similar to the Bottleneck Residual Block in ResNet | |
# """ | |
# def __init__(self, in_channels, out_channels, mesh_type='body'): | |
# super(GraphResBlock, self).__init__() | |
# self.in_channels = in_channels | |
# self.out_channels = out_channels | |
# self.conv = GraphConvolution(self.in_channels, self.out_channels, mesh_type) | |
# print('Use BertLayerNorm and GeLU in GraphResBlock') | |
# self.norm = BertLayerNorm(self.out_channels) | |
# def forward(self, x): | |
# y = self.conv(x) | |
# y = self.norm(y) | |
# y = gelu(y) | |
# z = x+y | |
# return z | |
class GraphLinear(torch.nn.Module): | |
""" | |
Generalization of 1x1 convolutions on Graphs | |
""" | |
def __init__(self, in_channels, out_channels): | |
super(GraphLinear, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.W = torch.nn.Parameter(torch.FloatTensor(out_channels, in_channels)) | |
self.b = torch.nn.Parameter(torch.FloatTensor(out_channels)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
w_stdv = 1 / (self.in_channels * self.out_channels) | |
self.W.data.uniform_(-w_stdv, w_stdv) | |
self.b.data.uniform_(-w_stdv, w_stdv) | |
def forward(self, x): | |
return torch.matmul(self.W[None, :], x) + self.b[None, :, None] | |
class GraphConvolution(torch.nn.Module): | |
"""Simple GCN layer, similar to https://arxiv.org/abs/1609.02907.""" | |
def __init__(self, in_features, out_features, mesh='body', bias=True): | |
super(GraphConvolution, self).__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
if mesh=='body': | |
adj_indices = torch.load(data_path / 'smpl_431_adjmat_indices.pt') | |
adj_mat_value = torch.load(data_path / 'smpl_431_adjmat_values.pt') | |
adj_mat_size = torch.load(data_path / 'smpl_431_adjmat_size.pt') | |
elif mesh=='hand': | |
adj_indices = torch.load(data_path / 'mano_195_adjmat_indices.pt') | |
adj_mat_value = torch.load(data_path / 'mano_195_adjmat_values.pt') | |
adj_mat_size = torch.load(data_path / 'mano_195_adjmat_size.pt') | |
self.adjmat = sparse_to_dense(torch.sparse_coo_tensor(adj_indices, adj_mat_value, size=adj_mat_size)).to(device) | |
self.weight = torch.nn.Parameter(torch.FloatTensor(in_features, out_features)) | |
if bias: | |
self.bias = torch.nn.Parameter(torch.FloatTensor(out_features)) | |
else: | |
self.register_parameter('bias', None) | |
self.reset_parameters() | |
def reset_parameters(self): | |
# stdv = 1. / math.sqrt(self.weight.size(1)) | |
stdv = 6. / math.sqrt(self.weight.size(0) + self.weight.size(1)) | |
self.weight.data.uniform_(-stdv, stdv) | |
if self.bias is not None: | |
self.bias.data.uniform_(-stdv, stdv) | |
def forward(self, x): | |
if x.ndimension() == 2: | |
support = torch.matmul(x, self.weight) | |
output = torch.matmul(self.adjmat, support) | |
if self.bias is not None: | |
output = output + self.bias | |
return output | |
else: | |
output = [] | |
for i in range(x.shape[0]): | |
support = torch.matmul(x[i], self.weight) | |
# output.append(torch.matmul(self.adjmat, support)) | |
output.append(spmm(self.adjmat, support)) | |
output = torch.stack(output, dim=0) | |
if self.bias is not None: | |
output = output + self.bias | |
return output | |
def __repr__(self): | |
return self.__class__.__name__ + ' (' \ | |
+ str(self.in_features) + ' -> ' \ | |
+ str(self.out_features) + ')' |