Spaces:
Configuration error
Configuration error
""" | |
Copyright (c) Microsoft Corporation. | |
Licensed under the MIT license. | |
Training and evaluation codes for | |
3D hand mesh reconstruction from an image | |
""" | |
from __future__ import absolute_import, division, print_function | |
import argparse | |
import os | |
import os.path as op | |
import code | |
import json | |
import time | |
import datetime | |
import torch | |
import torchvision.models as models | |
from torchvision.utils import make_grid | |
import gc | |
import numpy as np | |
import cv2 | |
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer | |
from custom_mesh_graphormer.modeling.bert import Graphormer_Hand_Network as Graphormer_Network | |
from custom_mesh_graphormer.modeling._mano import MANO, Mesh | |
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat | |
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config | |
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config | |
import custom_mesh_graphormer.modeling.data.config as cfg | |
from custom_mesh_graphormer.datasets.build import make_hand_data_loader | |
from custom_mesh_graphormer.utils.logger import setup_logger | |
from custom_mesh_graphormer.utils.comm import synchronize, is_main_process, get_rank, get_world_size, all_gather | |
from custom_mesh_graphormer.utils.miscellaneous import mkdir, set_seed | |
from custom_mesh_graphormer.utils.metric_logger import AverageMeter | |
from custom_mesh_graphormer.utils.renderer import Renderer, visualize_reconstruction, visualize_reconstruction_test, visualize_reconstruction_no_text | |
from custom_mesh_graphormer.utils.metric_pampjpe import reconstruction_error | |
from custom_mesh_graphormer.utils.geometric_layers import orthographic_projection | |
from comfy.model_management import get_torch_device | |
device = get_torch_device() | |
from azureml.core.run import Run | |
aml_run = Run.get_context() | |
def save_checkpoint(model, args, epoch, iteration, num_trial=10): | |
checkpoint_dir = op.join(args.output_dir, 'checkpoint-{}-{}'.format( | |
epoch, iteration)) | |
if not is_main_process(): | |
return checkpoint_dir | |
mkdir(checkpoint_dir) | |
model_to_save = model.module if hasattr(model, 'module') else model | |
for i in range(num_trial): | |
try: | |
torch.save(model_to_save, op.join(checkpoint_dir, 'model.bin')) | |
torch.save(model_to_save.state_dict(), op.join(checkpoint_dir, 'state_dict.bin')) | |
torch.save(args, op.join(checkpoint_dir, 'training_args.bin')) | |
logger.info("Save checkpoint to {}".format(checkpoint_dir)) | |
break | |
except: | |
pass | |
else: | |
logger.info("Failed to save checkpoint after {} trails.".format(num_trial)) | |
return checkpoint_dir | |
def adjust_learning_rate(optimizer, epoch, args): | |
""" | |
Sets the learning rate to the initial LR decayed by x every y epochs | |
x = 0.1, y = args.num_train_epochs/2.0 = 100 | |
""" | |
lr = args.lr * (0.1 ** (epoch // (args.num_train_epochs/2.0) )) | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
def keypoint_2d_loss(criterion_keypoints, pred_keypoints_2d, gt_keypoints_2d, has_pose_2d): | |
""" | |
Compute 2D reprojection loss if 2D keypoint annotations are available. | |
The confidence is binary and indicates whether the keypoints exist or not. | |
""" | |
conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone() | |
loss = (conf * criterion_keypoints(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).mean() | |
return loss | |
def keypoint_3d_loss(criterion_keypoints, pred_keypoints_3d, gt_keypoints_3d, has_pose_3d): | |
""" | |
Compute 3D keypoint loss if 3D keypoint annotations are available. | |
""" | |
conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone() | |
gt_keypoints_3d = gt_keypoints_3d[:, :, :-1].clone() | |
gt_keypoints_3d = gt_keypoints_3d[has_pose_3d == 1] | |
conf = conf[has_pose_3d == 1] | |
pred_keypoints_3d = pred_keypoints_3d[has_pose_3d == 1] | |
if len(gt_keypoints_3d) > 0: | |
gt_root = gt_keypoints_3d[:, 0,:] | |
gt_keypoints_3d = gt_keypoints_3d - gt_root[:, None, :] | |
pred_root = pred_keypoints_3d[:, 0,:] | |
pred_keypoints_3d = pred_keypoints_3d - pred_root[:, None, :] | |
return (conf * criterion_keypoints(pred_keypoints_3d, gt_keypoints_3d)).mean() | |
else: | |
return torch.FloatTensor(1).fill_(0.).to(device) | |
def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl): | |
""" | |
Compute per-vertex loss if vertex annotations are available. | |
""" | |
pred_vertices_with_shape = pred_vertices[has_smpl == 1] | |
gt_vertices_with_shape = gt_vertices[has_smpl == 1] | |
if len(gt_vertices_with_shape) > 0: | |
return criterion_vertices(pred_vertices_with_shape, gt_vertices_with_shape) | |
else: | |
return torch.FloatTensor(1).fill_(0.).to(device) | |
def run(args, train_dataloader, Graphormer_model, mano_model, renderer, mesh_sampler): | |
max_iter = len(train_dataloader) | |
iters_per_epoch = max_iter // args.num_train_epochs | |
optimizer = torch.optim.Adam(params=list(Graphormer_model.parameters()), | |
lr=args.lr, | |
betas=(0.9, 0.999), | |
weight_decay=0) | |
# define loss function (criterion) and optimizer | |
criterion_2d_keypoints = torch.nn.MSELoss(reduction='none').to(device) | |
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device) | |
criterion_vertices = torch.nn.L1Loss().to(device) | |
if args.distributed: | |
Graphormer_model = torch.nn.parallel.DistributedDataParallel( | |
Graphormer_model, device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
find_unused_parameters=True, | |
) | |
start_training_time = time.time() | |
end = time.time() | |
Graphormer_model.train() | |
batch_time = AverageMeter() | |
data_time = AverageMeter() | |
log_losses = AverageMeter() | |
log_loss_2djoints = AverageMeter() | |
log_loss_3djoints = AverageMeter() | |
log_loss_vertices = AverageMeter() | |
for iteration, (img_keys, images, annotations) in enumerate(train_dataloader): | |
Graphormer_model.train() | |
iteration += 1 | |
epoch = iteration // iters_per_epoch | |
batch_size = images.size(0) | |
adjust_learning_rate(optimizer, epoch, args) | |
data_time.update(time.time() - end) | |
images = images.to(device) | |
gt_2d_joints = annotations['joints_2d'].to(device) | |
gt_pose = annotations['pose'].to(device) | |
gt_betas = annotations['betas'].to(device) | |
has_mesh = annotations['has_smpl'].to(device) | |
has_3d_joints = has_mesh | |
has_2d_joints = has_mesh | |
mjm_mask = annotations['mjm_mask'].to(device) | |
mvm_mask = annotations['mvm_mask'].to(device) | |
# generate mesh | |
gt_vertices, gt_3d_joints = mano_model.layer(gt_pose, gt_betas) | |
gt_vertices = gt_vertices/1000.0 | |
gt_3d_joints = gt_3d_joints/1000.0 | |
gt_vertices_sub = mesh_sampler.downsample(gt_vertices) | |
# normalize gt based on hand's wrist | |
gt_3d_root = gt_3d_joints[:,cfg.J_NAME.index('Wrist'),:] | |
gt_vertices = gt_vertices - gt_3d_root[:, None, :] | |
gt_vertices_sub = gt_vertices_sub - gt_3d_root[:, None, :] | |
gt_3d_joints = gt_3d_joints - gt_3d_root[:, None, :] | |
gt_3d_joints_with_tag = torch.ones((batch_size,gt_3d_joints.shape[1],4)).to(device) | |
gt_3d_joints_with_tag[:,:,:3] = gt_3d_joints | |
# prepare masks for mask vertex/joint modeling | |
mjm_mask_ = mjm_mask.expand(-1,-1,2051) | |
mvm_mask_ = mvm_mask.expand(-1,-1,2051) | |
meta_masks = torch.cat([mjm_mask_, mvm_mask_], dim=1) | |
# forward-pass | |
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler, meta_masks=meta_masks, is_train=True) | |
# obtain 3d joints, which are regressed from the full mesh | |
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices) | |
# obtain 2d joints, which are projected from 3d joints of smpl mesh | |
pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous()) | |
pred_2d_joints = orthographic_projection(pred_3d_joints.contiguous(), pred_camera.contiguous()) | |
# compute 3d joint loss (where the joints are directly output from transformer) | |
loss_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints, gt_3d_joints_with_tag, has_3d_joints) | |
# compute 3d vertex loss | |
loss_vertices = ( args.vloss_w_sub * vertices_loss(criterion_vertices, pred_vertices_sub, gt_vertices_sub, has_mesh) + \ | |
args.vloss_w_full * vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_mesh) ) | |
# compute 3d joint loss (where the joints are regressed from full mesh) | |
loss_reg_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints_from_mesh, gt_3d_joints_with_tag, has_3d_joints) | |
# compute 2d joint loss | |
loss_2d_joints = keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints, gt_2d_joints, has_2d_joints) + \ | |
keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints_from_mesh, gt_2d_joints, has_2d_joints) | |
loss_3d_joints = loss_3d_joints + loss_reg_3d_joints | |
# we empirically use hyperparameters to balance difference losses | |
loss = args.joints_loss_weight*loss_3d_joints + \ | |
args.vertices_loss_weight*loss_vertices + args.vertices_loss_weight*loss_2d_joints | |
# update logs | |
log_loss_2djoints.update(loss_2d_joints.item(), batch_size) | |
log_loss_3djoints.update(loss_3d_joints.item(), batch_size) | |
log_loss_vertices.update(loss_vertices.item(), batch_size) | |
log_losses.update(loss.item(), batch_size) | |
# back prop | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
batch_time.update(time.time() - end) | |
end = time.time() | |
if iteration % args.logging_steps == 0 or iteration == max_iter: | |
eta_seconds = batch_time.avg * (max_iter - iteration) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
logger.info( | |
' '.join( | |
['eta: {eta}', 'epoch: {ep}', 'iter: {iter}', 'max mem : {memory:.0f}',] | |
).format(eta=eta_string, ep=epoch, iter=iteration, | |
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) | |
+ ' loss: {:.4f}, 2d joint loss: {:.4f}, 3d joint loss: {:.4f}, vertex loss: {:.4f}, compute: {:.4f}, data: {:.4f}, lr: {:.6f}'.format( | |
log_losses.avg, log_loss_2djoints.avg, log_loss_3djoints.avg, log_loss_vertices.avg, batch_time.avg, data_time.avg, | |
optimizer.param_groups[0]['lr']) | |
) | |
aml_run.log(name='Loss', value=float(log_losses.avg)) | |
aml_run.log(name='3d joint Loss', value=float(log_loss_3djoints.avg)) | |
aml_run.log(name='2d joint Loss', value=float(log_loss_2djoints.avg)) | |
aml_run.log(name='vertex Loss', value=float(log_loss_vertices.avg)) | |
visual_imgs = visualize_mesh( renderer, | |
annotations['ori_img'].detach(), | |
annotations['joints_2d'].detach(), | |
pred_vertices.detach(), | |
pred_camera.detach(), | |
pred_2d_joints_from_mesh.detach()) | |
visual_imgs = visual_imgs.transpose(0,1) | |
visual_imgs = visual_imgs.transpose(1,2) | |
visual_imgs = np.asarray(visual_imgs) | |
if is_main_process()==True: | |
stamp = str(epoch) + '_' + str(iteration) | |
temp_fname = args.output_dir + 'visual_' + stamp + '.jpg' | |
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255)) | |
aml_run.log_image(name='visual results', path=temp_fname) | |
if iteration % iters_per_epoch == 0: | |
if epoch%10==0: | |
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration) | |
total_training_time = time.time() - start_training_time | |
total_time_str = str(datetime.timedelta(seconds=total_training_time)) | |
logger.info('Total training time: {} ({:.4f} s / iter)'.format( | |
total_time_str, total_training_time / max_iter) | |
) | |
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration) | |
def run_eval_and_save(args, split, val_dataloader, Graphormer_model, mano_model, renderer, mesh_sampler): | |
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device) | |
criterion_vertices = torch.nn.L1Loss().to(device) | |
if args.distributed: | |
Graphormer_model = torch.nn.parallel.DistributedDataParallel( | |
Graphormer_model, device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
find_unused_parameters=True, | |
) | |
Graphormer_model.eval() | |
if args.aml_eval==True: | |
run_aml_inference_hand_mesh(args, val_dataloader, | |
Graphormer_model, | |
criterion_keypoints, | |
criterion_vertices, | |
0, | |
mano_model, mesh_sampler, | |
renderer, split) | |
else: | |
run_inference_hand_mesh(args, val_dataloader, | |
Graphormer_model, | |
criterion_keypoints, | |
criterion_vertices, | |
0, | |
mano_model, mesh_sampler, | |
renderer, split) | |
checkpoint_dir = save_checkpoint(Graphormer_model, args, 0, 0) | |
return | |
def run_aml_inference_hand_mesh(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, mano_model, mesh_sampler, renderer, split): | |
# switch to evaluate mode | |
Graphormer_model.eval() | |
fname_output_save = [] | |
mesh_output_save = [] | |
joint_output_save = [] | |
world_size = get_world_size() | |
with torch.no_grad(): | |
for i, (img_keys, images, annotations) in enumerate(val_loader): | |
batch_size = images.size(0) | |
# compute output | |
images = images.to(device) | |
# forward-pass | |
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler) | |
# obtain 3d joints from full mesh | |
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices) | |
for j in range(batch_size): | |
fname_output_save.append(img_keys[j]) | |
pred_vertices_list = pred_vertices[j].tolist() | |
mesh_output_save.append(pred_vertices_list) | |
pred_3d_joints_from_mesh_list = pred_3d_joints_from_mesh[j].tolist() | |
joint_output_save.append(pred_3d_joints_from_mesh_list) | |
if world_size > 1: | |
torch.distributed.barrier() | |
print('save results to pred.json') | |
output_json_file = 'pred.json' | |
print('save results to ', output_json_file) | |
with open(output_json_file, 'w') as f: | |
json.dump([joint_output_save, mesh_output_save], f) | |
azure_ckpt_name = '200' # args.resume_checkpoint.split('/')[-2].split('-')[1] | |
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot))) | |
output_zip_file = args.output_dir + 'ckpt' + azure_ckpt_name + '-' + inference_setting +'-pred.zip' | |
resolved_submit_cmd = 'zip ' + output_zip_file + ' ' + output_json_file | |
print(resolved_submit_cmd) | |
os.system(resolved_submit_cmd) | |
resolved_submit_cmd = 'rm %s'%(output_json_file) | |
print(resolved_submit_cmd) | |
os.system(resolved_submit_cmd) | |
if world_size > 1: | |
torch.distributed.barrier() | |
return | |
def run_inference_hand_mesh(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, mano_model, mesh_sampler, renderer, split): | |
# switch to evaluate mode | |
Graphormer_model.eval() | |
fname_output_save = [] | |
mesh_output_save = [] | |
joint_output_save = [] | |
with torch.no_grad(): | |
for i, (img_keys, images, annotations) in enumerate(val_loader): | |
batch_size = images.size(0) | |
# compute output | |
images = images.to(device) | |
# forward-pass | |
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler) | |
# obtain 3d joints from full mesh | |
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices) | |
pred_3d_pelvis = pred_3d_joints_from_mesh[:,cfg.J_NAME.index('Wrist'),:] | |
pred_3d_joints_from_mesh = pred_3d_joints_from_mesh - pred_3d_pelvis[:, None, :] | |
pred_vertices = pred_vertices - pred_3d_pelvis[:, None, :] | |
for j in range(batch_size): | |
fname_output_save.append(img_keys[j]) | |
pred_vertices_list = pred_vertices[j].tolist() | |
mesh_output_save.append(pred_vertices_list) | |
pred_3d_joints_from_mesh_list = pred_3d_joints_from_mesh[j].tolist() | |
joint_output_save.append(pred_3d_joints_from_mesh_list) | |
if i%20==0: | |
# obtain 3d joints, which are regressed from the full mesh | |
pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices) | |
# obtain 2d joints, which are projected from 3d joints of mesh | |
pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous()) | |
visual_imgs = visualize_mesh( renderer, | |
annotations['ori_img'].detach(), | |
annotations['joints_2d'].detach(), | |
pred_vertices.detach(), | |
pred_camera.detach(), | |
pred_2d_joints_from_mesh.detach()) | |
visual_imgs = visual_imgs.transpose(0,1) | |
visual_imgs = visual_imgs.transpose(1,2) | |
visual_imgs = np.asarray(visual_imgs) | |
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot))) | |
temp_fname = args.output_dir + args.resume_checkpoint[0:-9] + 'freihand_results_'+inference_setting+'_batch'+str(i)+'.jpg' | |
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255)) | |
print('save results to pred.json') | |
with open('pred.json', 'w') as f: | |
json.dump([joint_output_save, mesh_output_save], f) | |
run_exp_name = args.resume_checkpoint.split('/')[-3] | |
run_ckpt_name = args.resume_checkpoint.split('/')[-2].split('-')[1] | |
inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot))) | |
resolved_submit_cmd = 'zip ' + args.output_dir + run_exp_name + '-ckpt'+ run_ckpt_name + '-' + inference_setting +'-pred.zip ' + 'pred.json' | |
print(resolved_submit_cmd) | |
os.system(resolved_submit_cmd) | |
resolved_submit_cmd = 'rm pred.json' | |
print(resolved_submit_cmd) | |
os.system(resolved_submit_cmd) | |
return | |
def visualize_mesh( renderer, | |
images, | |
gt_keypoints_2d, | |
pred_vertices, | |
pred_camera, | |
pred_keypoints_2d): | |
"""Tensorboard logging.""" | |
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy() | |
to_lsp = list(range(21)) | |
rend_imgs = [] | |
batch_size = pred_vertices.shape[0] | |
# Do visualization for the first 6 images of the batch | |
for i in range(min(batch_size, 10)): | |
img = images[i].cpu().numpy().transpose(1,2,0) | |
# Get LSP keypoints from the full list of keypoints | |
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp] | |
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp] | |
# Get predict vertices for the particular example | |
vertices = pred_vertices[i].cpu().numpy() | |
cam = pred_camera[i].cpu().numpy() | |
# Visualize reconstruction and detected pose | |
rend_img = visualize_reconstruction(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer) | |
rend_img = rend_img.transpose(2,0,1) | |
rend_imgs.append(torch.from_numpy(rend_img)) | |
rend_imgs = make_grid(rend_imgs, nrow=1) | |
return rend_imgs | |
def visualize_mesh_test( renderer, | |
images, | |
gt_keypoints_2d, | |
pred_vertices, | |
pred_camera, | |
pred_keypoints_2d, | |
PAmPJPE): | |
"""Tensorboard logging.""" | |
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy() | |
to_lsp = list(range(21)) | |
rend_imgs = [] | |
batch_size = pred_vertices.shape[0] | |
# Do visualization for the first 6 images of the batch | |
for i in range(min(batch_size, 10)): | |
img = images[i].cpu().numpy().transpose(1,2,0) | |
# Get LSP keypoints from the full list of keypoints | |
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp] | |
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp] | |
# Get predict vertices for the particular example | |
vertices = pred_vertices[i].cpu().numpy() | |
cam = pred_camera[i].cpu().numpy() | |
score = PAmPJPE[i] | |
# Visualize reconstruction and detected pose | |
rend_img = visualize_reconstruction_test(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer, score) | |
rend_img = rend_img.transpose(2,0,1) | |
rend_imgs.append(torch.from_numpy(rend_img)) | |
rend_imgs = make_grid(rend_imgs, nrow=1) | |
return rend_imgs | |
def visualize_mesh_no_text( renderer, | |
images, | |
pred_vertices, | |
pred_camera): | |
"""Tensorboard logging.""" | |
rend_imgs = [] | |
batch_size = pred_vertices.shape[0] | |
# Do visualization for the first 6 images of the batch | |
for i in range(min(batch_size, 1)): | |
img = images[i].cpu().numpy().transpose(1,2,0) | |
# Get predict vertices for the particular example | |
vertices = pred_vertices[i].cpu().numpy() | |
cam = pred_camera[i].cpu().numpy() | |
# Visualize reconstruction only | |
rend_img = visualize_reconstruction_no_text(img, 224, vertices, cam, renderer, color='hand') | |
rend_img = rend_img.transpose(2,0,1) | |
rend_imgs.append(torch.from_numpy(rend_img)) | |
rend_imgs = make_grid(rend_imgs, nrow=1) | |
return rend_imgs | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
######################################################### | |
# Data related arguments | |
######################################################### | |
parser.add_argument("--data_dir", default='datasets', type=str, required=False, | |
help="Directory with all datasets, each in one subfolder") | |
parser.add_argument("--train_yaml", default='imagenet2012/train.yaml', type=str, required=False, | |
help="Yaml file with all data for training.") | |
parser.add_argument("--val_yaml", default='imagenet2012/test.yaml', type=str, required=False, | |
help="Yaml file with all data for validation.") | |
parser.add_argument("--num_workers", default=4, type=int, | |
help="Workers in dataloader.") | |
parser.add_argument("--img_scale_factor", default=1, type=int, | |
help="adjust image resolution.") | |
######################################################### | |
# Loading/saving checkpoints | |
######################################################### | |
parser.add_argument("--model_name_or_path", default='src/modeling/bert/bert-base-uncased/', type=str, required=False, | |
help="Path to pre-trained transformer model or model type.") | |
parser.add_argument("--resume_checkpoint", default=None, type=str, required=False, | |
help="Path to specific checkpoint for resume training.") | |
parser.add_argument("--output_dir", default='output/', type=str, required=False, | |
help="The output directory to save checkpoint and test results.") | |
parser.add_argument("--config_name", default="", type=str, | |
help="Pretrained config name or path if not the same as model_name.") | |
parser.add_argument('-a', '--arch', default='hrnet-w64', | |
help='CNN backbone architecture: hrnet-w64, hrnet, resnet50') | |
######################################################### | |
# Training parameters | |
######################################################### | |
parser.add_argument("--per_gpu_train_batch_size", default=64, type=int, | |
help="Batch size per GPU/CPU for training.") | |
parser.add_argument("--per_gpu_eval_batch_size", default=64, type=int, | |
help="Batch size per GPU/CPU for evaluation.") | |
parser.add_argument('--lr', "--learning_rate", default=1e-4, type=float, | |
help="The initial lr.") | |
parser.add_argument("--num_train_epochs", default=200, type=int, | |
help="Total number of training epochs to perform.") | |
parser.add_argument("--vertices_loss_weight", default=1.0, type=float) | |
parser.add_argument("--joints_loss_weight", default=1.0, type=float) | |
parser.add_argument("--vloss_w_full", default=0.5, type=float) | |
parser.add_argument("--vloss_w_sub", default=0.5, type=float) | |
parser.add_argument("--drop_out", default=0.1, type=float, | |
help="Drop out ratio in BERT.") | |
######################################################### | |
# Model architectures | |
######################################################### | |
parser.add_argument("--num_hidden_layers", default=-1, type=int, required=False, | |
help="Update model config if given") | |
parser.add_argument("--hidden_size", default=-1, type=int, required=False, | |
help="Update model config if given") | |
parser.add_argument("--num_attention_heads", default=-1, type=int, required=False, | |
help="Update model config if given. Note that the division of " | |
"hidden_size / num_attention_heads should be in integer.") | |
parser.add_argument("--intermediate_size", default=-1, type=int, required=False, | |
help="Update model config if given.") | |
parser.add_argument("--input_feat_dim", default='2051,512,128', type=str, | |
help="The Image Feature Dimension.") | |
parser.add_argument("--hidden_feat_dim", default='1024,256,64', type=str, | |
help="The Image Feature Dimension.") | |
parser.add_argument("--which_gcn", default='0,0,1', type=str, | |
help="which encoder block to have graph conv. Encoder1, Encoder2, Encoder3. Default: only Encoder3 has graph conv") | |
parser.add_argument("--mesh_type", default='hand', type=str, help="body or hand") | |
######################################################### | |
# Others | |
######################################################### | |
parser.add_argument("--run_eval_only", default=False, action='store_true',) | |
parser.add_argument("--multiscale_inference", default=False, action='store_true',) | |
# if enable "multiscale_inference", dataloader will apply transformations to the test image based on | |
# the rotation "rot" and scale "sc" parameters below | |
parser.add_argument("--rot", default=0, type=float) | |
parser.add_argument("--sc", default=1.0, type=float) | |
parser.add_argument("--aml_eval", default=False, action='store_true',) | |
parser.add_argument('--logging_steps', type=int, default=100, | |
help="Log every X steps.") | |
parser.add_argument("--device", type=str, default='cuda', | |
help="cuda or cpu") | |
parser.add_argument('--seed', type=int, default=88, | |
help="random seed for initialization.") | |
parser.add_argument("--local_rank", type=int, default=0, | |
help="For distributed training.") | |
args = parser.parse_args() | |
return args | |
def main(args): | |
global logger | |
# Setup CUDA, GPU & distributed training | |
args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 | |
os.environ['OMP_NUM_THREADS'] = str(args.num_workers) | |
print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS'])) | |
args.distributed = args.num_gpus > 1 | |
args.device = torch.device(args.device) | |
if args.distributed: | |
print("Init distributed training on local rank {}".format(args.local_rank)) | |
torch.cuda.set_device(args.local_rank) | |
torch.distributed.init_process_group( | |
backend='nccl', init_method='env://' | |
) | |
synchronize() | |
mkdir(args.output_dir) | |
logger = setup_logger("Graphormer", args.output_dir, get_rank()) | |
set_seed(args.seed, args.num_gpus) | |
logger.info("Using {} GPUs".format(args.num_gpus)) | |
# Mesh and SMPL utils | |
mano_model = MANO().to(args.device) | |
mano_model.layer = mano_model.layer.to(device) | |
mesh_sampler = Mesh() | |
# Renderer for visualization | |
renderer = Renderer(faces=mano_model.face) | |
# Load pretrained model | |
trans_encoder = [] | |
input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')] | |
hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')] | |
output_feat_dim = input_feat_dim[1:] + [3] | |
# which encoder block to have graph convs | |
which_blk_graph = [int(item) for item in args.which_gcn.split(',')] | |
if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint: | |
# if only run eval, load checkpoint | |
logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint)) | |
_model = torch.load(args.resume_checkpoint) | |
else: | |
# init three transformer-encoder blocks in a loop | |
for i in range(len(output_feat_dim)): | |
config_class, model_class = BertConfig, Graphormer | |
config = config_class.from_pretrained(args.config_name if args.config_name \ | |
else args.model_name_or_path) | |
config.output_attentions = False | |
config.hidden_dropout_prob = args.drop_out | |
config.img_feature_dim = input_feat_dim[i] | |
config.output_feature_dim = output_feat_dim[i] | |
args.hidden_size = hidden_feat_dim[i] | |
args.intermediate_size = int(args.hidden_size*2) | |
if which_blk_graph[i]==1: | |
config.graph_conv = True | |
logger.info("Add Graph Conv") | |
else: | |
config.graph_conv = False | |
config.mesh_type = args.mesh_type | |
# update model structure if specified in arguments | |
update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size'] | |
for idx, param in enumerate(update_params): | |
arg_param = getattr(args, param) | |
config_param = getattr(config, param) | |
if arg_param > 0 and arg_param != config_param: | |
logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param)) | |
setattr(config, param, arg_param) | |
# init a transformer encoder and append it to a list | |
assert config.hidden_size % config.num_attention_heads == 0 | |
model = model_class(config=config) | |
logger.info("Init model from scratch.") | |
trans_encoder.append(model) | |
# create backbone model | |
if args.arch=='hrnet': | |
hrnet_yaml = 'models/hrnet/cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml' | |
hrnet_checkpoint = 'models/hrnet/hrnetv2_w40_imagenet_pretrained.pth' | |
hrnet_update_config(hrnet_config, hrnet_yaml) | |
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint) | |
logger.info('=> loading hrnet-v2-w40 model') | |
elif args.arch=='hrnet-w64': | |
hrnet_yaml = 'models/hrnet/cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml' | |
hrnet_checkpoint = 'models/hrnet/hrnetv2_w64_imagenet_pretrained.pth' | |
hrnet_update_config(hrnet_config, hrnet_yaml) | |
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint) | |
logger.info('=> loading hrnet-v2-w64 model') | |
else: | |
print("=> using pre-trained model '{}'".format(args.arch)) | |
backbone = models.__dict__[args.arch](pretrained=True) | |
# remove the last fc layer | |
backbone = torch.nn.Sequential(*list(backbone.children())[:-1]) | |
trans_encoder = torch.nn.Sequential(*trans_encoder) | |
total_params = sum(p.numel() for p in trans_encoder.parameters()) | |
logger.info('Graphormer encoders total parameters: {}'.format(total_params)) | |
backbone_total_params = sum(p.numel() for p in backbone.parameters()) | |
logger.info('Backbone total parameters: {}'.format(backbone_total_params)) | |
# build end-to-end Graphormer network (CNN backbone + multi-layer Graphormer encoder) | |
_model = Graphormer_Network(args, config, backbone, trans_encoder) | |
if args.resume_checkpoint!=None and args.resume_checkpoint!='None': | |
# for fine-tuning or resume training or inference, load weights from checkpoint | |
logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint)) | |
# workaround approach to load sparse tensor in graph conv. | |
state_dict = torch.load(args.resume_checkpoint) | |
_model.load_state_dict(state_dict, strict=False) | |
del state_dict | |
gc.collect() | |
torch.cuda.empty_cache() | |
_model.to(args.device) | |
logger.info("Training parameters %s", args) | |
if args.run_eval_only==True: | |
val_dataloader = make_hand_data_loader(args, args.val_yaml, | |
args.distributed, is_train=False, scale_factor=args.img_scale_factor) | |
run_eval_and_save(args, 'freihand', val_dataloader, _model, mano_model, renderer, mesh_sampler) | |
else: | |
train_dataloader = make_hand_data_loader(args, args.train_yaml, | |
args.distributed, is_train=True, scale_factor=args.img_scale_factor) | |
run(args, train_dataloader, _model, mano_model, renderer, mesh_sampler) | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |