Spaces:
Configuration error
Configuration error
Upload 304 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +8 -0
- PuLID_ComfyUI/LICENSE +201 -0
- PuLID_ComfyUI/README.md +37 -0
- PuLID_ComfyUI/__init__.py +3 -0
- PuLID_ComfyUI/encoders.py +63 -0
- PuLID_ComfyUI/eva_clip/__init__.py +11 -0
- PuLID_ComfyUI/eva_clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- PuLID_ComfyUI/eva_clip/constants.py +2 -0
- PuLID_ComfyUI/eva_clip/eva_vit_model.py +548 -0
- PuLID_ComfyUI/eva_clip/factory.py +517 -0
- PuLID_ComfyUI/eva_clip/hf_configs.py +57 -0
- PuLID_ComfyUI/eva_clip/hf_model.py +248 -0
- PuLID_ComfyUI/eva_clip/loss.py +138 -0
- PuLID_ComfyUI/eva_clip/model.py +439 -0
- PuLID_ComfyUI/eva_clip/model_configs/EVA01-CLIP-B-16.json +19 -0
- PuLID_ComfyUI/eva_clip/model_configs/EVA01-CLIP-g-14-plus.json +24 -0
- PuLID_ComfyUI/eva_clip/model_configs/EVA01-CLIP-g-14.json +24 -0
- PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-B-16.json +29 -0
- PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-L-14-336.json +29 -0
- PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-L-14.json +29 -0
- PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json +25 -0
- PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-bigE-14.json +25 -0
- PuLID_ComfyUI/eva_clip/modified_resnet.py +181 -0
- PuLID_ComfyUI/eva_clip/openai.py +144 -0
- PuLID_ComfyUI/eva_clip/pretrained.py +332 -0
- PuLID_ComfyUI/eva_clip/rope.py +137 -0
- PuLID_ComfyUI/eva_clip/timm_model.py +122 -0
- PuLID_ComfyUI/eva_clip/tokenizer.py +201 -0
- PuLID_ComfyUI/eva_clip/transform.py +103 -0
- PuLID_ComfyUI/eva_clip/transformer.py +737 -0
- PuLID_ComfyUI/eva_clip/utils.py +326 -0
- PuLID_ComfyUI/examples/PuLID_4-Step_lightning.json +631 -0
- PuLID_ComfyUI/examples/PuLID_IPAdapter_style_transfer.json +794 -0
- PuLID_ComfyUI/examples/PuLID_attention_mask.json +946 -0
- PuLID_ComfyUI/examples/PuLID_lightning_lora.json +649 -0
- PuLID_ComfyUI/examples/PuLID_simple.json +601 -0
- PuLID_ComfyUI/examples/pulid_wf.jpg +3 -0
- PuLID_ComfyUI/pulid.py +492 -0
- PuLID_ComfyUI/pyproject.toml +15 -0
- PuLID_ComfyUI/requirements.txt +6 -0
- example_node.py.example +155 -0
- rgthree-comfy/LICENSE +21 -0
- rgthree-comfy/README.md +411 -0
- rgthree-comfy/__build__.py +134 -0
- rgthree-comfy/__init__.py +321 -0
- rgthree-comfy/__update_comfy__.py +57 -0
- rgthree-comfy/docs/rgthree_advanced.png +3 -0
- rgthree-comfy/docs/rgthree_advanced_metadata.png +3 -0
- rgthree-comfy/docs/rgthree_context.png +3 -0
- rgthree-comfy/docs/rgthree_context_metadata.png +3 -0
.gitattributes
CHANGED
@@ -45,3 +45,11 @@ ComfyUI-KJNodes/fonts/FreeMonoBoldOblique.otf filter=lfs diff=lfs merge=lfs -tex
|
|
45 |
ComfyUI-KJNodes/fonts/TTNorms-Black.otf filter=lfs diff=lfs merge=lfs -text
|
46 |
ComfyUI-Kolors-MZ/configs/tokenizer/vocab.txt filter=lfs diff=lfs merge=lfs -text
|
47 |
ComfyUI-KwaiKolorsWrapper/configs/tokenizer/vocab.txt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
ComfyUI-KJNodes/fonts/TTNorms-Black.otf filter=lfs diff=lfs merge=lfs -text
|
46 |
ComfyUI-Kolors-MZ/configs/tokenizer/vocab.txt filter=lfs diff=lfs merge=lfs -text
|
47 |
ComfyUI-KwaiKolorsWrapper/configs/tokenizer/vocab.txt filter=lfs diff=lfs merge=lfs -text
|
48 |
+
PuLID_ComfyUI/examples/pulid_wf.jpg filter=lfs diff=lfs merge=lfs -text
|
49 |
+
rgthree-comfy/docs/rgthree_advanced_metadata.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
rgthree-comfy/docs/rgthree_advanced.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
rgthree-comfy/docs/rgthree_context_metadata.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
rgthree-comfy/docs/rgthree_context.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
x-flux-comfyui/assets/image1.png filter=lfs diff=lfs merge=lfs -text
|
54 |
+
x-flux-comfyui/guide/manager_menu.png filter=lfs diff=lfs merge=lfs -text
|
55 |
+
x-flux-comfyui/workflows/example.jpg filter=lfs diff=lfs merge=lfs -text
|
PuLID_ComfyUI/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
PuLID_ComfyUI/README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PuLID ComfyUI
|
2 |
+
|
3 |
+
[PuLID](https://github.com/ToTheBeginning/PuLID) ComfyUI native implementation.
|
4 |
+
|
5 |
+

|
6 |
+
|
7 |
+
## Important updates
|
8 |
+
|
9 |
+
- **2024.05.12:** Added attention masking and the Advanced node, allows fine tuning of the generation.
|
10 |
+
|
11 |
+
## Notes
|
12 |
+
|
13 |
+
The code can be considered beta, things may change in the coming days. In the `examples` directory you'll find some basic workflows.
|
14 |
+
|
15 |
+
The original implementation makes use of a [4-step lighting UNet](https://huggingface.co/ByteDance/SDXL-Lightning). I made a few comparisons with the official Gradio demo using the same model in ComfyUI and I can't see any noticeable difference, meaning that this code should be faithful to the orignal. The Lightning lora doesn't work as well.
|
16 |
+
|
17 |
+
Testing other models though I noticed some quality degradation. You may need to experiment with CFG and various samplers/schedulers (try `sgm_uniform`).
|
18 |
+
|
19 |
+
**The quality of the reference image is very important**. Maybe this is because of the Eva CLIP that gets more details. Be sure to use a clean and sharp picture!
|
20 |
+
|
21 |
+
**For IPAdapter compatibility you need to update the IPAdapter extension!**
|
22 |
+
|
23 |
+
## The 'method' parameter
|
24 |
+
|
25 |
+
`method` applies the weights in different ways. `Fidelity` is closer to the reference ID, `Style` leaves more freedom to the checkpoint. Sometimes the difference is minimal. I've added `neutral` that doesn't do any normalization, if you use this option with the standard Apply node be sure to lower the weight. With the Advanced node you can simply increase the `fidelity` value.
|
26 |
+
|
27 |
+
The Advanced node has a `fidelity` slider and a `projection` option. `ortho_v2` with `fidelity: 8` is the same as `fidelity` method in the standard node. Projection `ortho` and `fidelity: 16` is the same as method `style`.
|
28 |
+
|
29 |
+
**Lower `fidelity` values grant higher resemblance to the reference image.**
|
30 |
+
|
31 |
+
## Installation
|
32 |
+
|
33 |
+
- [PuLID pre-trained model](https://huggingface.co/huchenlei/ipadapter_pulid/resolve/main/ip-adapter_pulid_sdxl_fp16.safetensors?download=true) goes in `ComfyUI/models/pulid/` (thanks to [Chenlei Hu](https://github.com/huchenlei) for converting them into IPAdapter format)
|
34 |
+
- The EVA CLIP is EVA02-CLIP-L-14-336, but should be downloaded automatically (will be located in the huggingface directory).
|
35 |
+
- `facexlib` dependency needs to be installed, the models are downloaded at first use
|
36 |
+
- Finally you need InsightFace with [AntelopeV2](https://huggingface.co/MonsterMMORPG/tools/tree/main), the unzipped models should be placed in `ComfyUI/models/insightface/models/antelopev2`.
|
37 |
+
|
PuLID_ComfyUI/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .pulid import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
|
2 |
+
|
3 |
+
__all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']
|
PuLID_ComfyUI/encoders.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class IDEncoder(nn.Module):
|
5 |
+
def __init__(self, width=1280, context_dim=2048, num_token=5):
|
6 |
+
super().__init__()
|
7 |
+
self.num_token = num_token
|
8 |
+
self.context_dim = context_dim
|
9 |
+
h1 = min((context_dim * num_token) // 4, 1024)
|
10 |
+
h2 = min((context_dim * num_token) // 2, 1024)
|
11 |
+
self.body = nn.Sequential(
|
12 |
+
nn.Linear(width, h1),
|
13 |
+
nn.LayerNorm(h1),
|
14 |
+
nn.LeakyReLU(),
|
15 |
+
nn.Linear(h1, h2),
|
16 |
+
nn.LayerNorm(h2),
|
17 |
+
nn.LeakyReLU(),
|
18 |
+
nn.Linear(h2, context_dim * num_token),
|
19 |
+
)
|
20 |
+
|
21 |
+
for i in range(5):
|
22 |
+
setattr(
|
23 |
+
self,
|
24 |
+
f'mapping_{i}',
|
25 |
+
nn.Sequential(
|
26 |
+
nn.Linear(1024, 1024),
|
27 |
+
nn.LayerNorm(1024),
|
28 |
+
nn.LeakyReLU(),
|
29 |
+
nn.Linear(1024, 1024),
|
30 |
+
nn.LayerNorm(1024),
|
31 |
+
nn.LeakyReLU(),
|
32 |
+
nn.Linear(1024, context_dim),
|
33 |
+
),
|
34 |
+
)
|
35 |
+
|
36 |
+
setattr(
|
37 |
+
self,
|
38 |
+
f'mapping_patch_{i}',
|
39 |
+
nn.Sequential(
|
40 |
+
nn.Linear(1024, 1024),
|
41 |
+
nn.LayerNorm(1024),
|
42 |
+
nn.LeakyReLU(),
|
43 |
+
nn.Linear(1024, 1024),
|
44 |
+
nn.LayerNorm(1024),
|
45 |
+
nn.LeakyReLU(),
|
46 |
+
nn.Linear(1024, context_dim),
|
47 |
+
),
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(self, x, y):
|
51 |
+
# x shape [N, C]
|
52 |
+
x = self.body(x)
|
53 |
+
x = x.reshape(-1, self.num_token, self.context_dim)
|
54 |
+
|
55 |
+
hidden_states = ()
|
56 |
+
for i, emb in enumerate(y):
|
57 |
+
hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')(
|
58 |
+
emb[:, 1:]
|
59 |
+
).mean(dim=1, keepdim=True)
|
60 |
+
hidden_states += (hidden_state,)
|
61 |
+
hidden_states = torch.cat(hidden_states, dim=1)
|
62 |
+
|
63 |
+
return torch.cat([x, hidden_states], dim=1)
|
PuLID_ComfyUI/eva_clip/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
2 |
+
from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_transforms
|
3 |
+
from .factory import list_models, add_model_config, get_model_config, load_checkpoint
|
4 |
+
from .loss import ClipLoss
|
5 |
+
from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\
|
6 |
+
convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
|
7 |
+
from .openai import load_openai_model, list_openai_models
|
8 |
+
from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\
|
9 |
+
get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
|
10 |
+
from .tokenizer import SimpleTokenizer, tokenize
|
11 |
+
from .transform import image_transform
|
PuLID_ComfyUI/eva_clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
PuLID_ComfyUI/eva_clip/constants.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
2 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
PuLID_ComfyUI/eva_clip/eva_vit_model.py
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
|
3 |
+
# --------------------------------------------------------
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
from functools import partial
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
try:
|
11 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
12 |
+
except:
|
13 |
+
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
14 |
+
|
15 |
+
from .transformer import PatchDropout
|
16 |
+
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
+
|
18 |
+
if os.getenv('ENV_TYPE') == 'deepspeed':
|
19 |
+
try:
|
20 |
+
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
21 |
+
except:
|
22 |
+
from torch.utils.checkpoint import checkpoint
|
23 |
+
else:
|
24 |
+
from torch.utils.checkpoint import checkpoint
|
25 |
+
|
26 |
+
try:
|
27 |
+
import xformers
|
28 |
+
import xformers.ops as xops
|
29 |
+
XFORMERS_IS_AVAILBLE = True
|
30 |
+
except:
|
31 |
+
XFORMERS_IS_AVAILBLE = False
|
32 |
+
|
33 |
+
class DropPath(nn.Module):
|
34 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
35 |
+
"""
|
36 |
+
def __init__(self, drop_prob=None):
|
37 |
+
super(DropPath, self).__init__()
|
38 |
+
self.drop_prob = drop_prob
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
return drop_path(x, self.drop_prob, self.training)
|
42 |
+
|
43 |
+
def extra_repr(self) -> str:
|
44 |
+
return 'p={}'.format(self.drop_prob)
|
45 |
+
|
46 |
+
|
47 |
+
class Mlp(nn.Module):
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
in_features,
|
51 |
+
hidden_features=None,
|
52 |
+
out_features=None,
|
53 |
+
act_layer=nn.GELU,
|
54 |
+
norm_layer=nn.LayerNorm,
|
55 |
+
drop=0.,
|
56 |
+
subln=False,
|
57 |
+
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
out_features = out_features or in_features
|
61 |
+
hidden_features = hidden_features or in_features
|
62 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
63 |
+
self.act = act_layer()
|
64 |
+
|
65 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
66 |
+
|
67 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
68 |
+
self.drop = nn.Dropout(drop)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
x = self.fc1(x)
|
72 |
+
x = self.act(x)
|
73 |
+
# x = self.drop(x)
|
74 |
+
# commit this for the orignal BERT implement
|
75 |
+
x = self.ffn_ln(x)
|
76 |
+
|
77 |
+
x = self.fc2(x)
|
78 |
+
x = self.drop(x)
|
79 |
+
return x
|
80 |
+
|
81 |
+
class SwiGLU(nn.Module):
|
82 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
83 |
+
norm_layer=nn.LayerNorm, subln=False):
|
84 |
+
super().__init__()
|
85 |
+
out_features = out_features or in_features
|
86 |
+
hidden_features = hidden_features or in_features
|
87 |
+
|
88 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
89 |
+
self.w2 = nn.Linear(in_features, hidden_features)
|
90 |
+
|
91 |
+
self.act = act_layer()
|
92 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
93 |
+
self.w3 = nn.Linear(hidden_features, out_features)
|
94 |
+
|
95 |
+
self.drop = nn.Dropout(drop)
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
x1 = self.w1(x)
|
99 |
+
x2 = self.w2(x)
|
100 |
+
hidden = self.act(x1) * x2
|
101 |
+
x = self.ffn_ln(hidden)
|
102 |
+
x = self.w3(x)
|
103 |
+
x = self.drop(x)
|
104 |
+
return x
|
105 |
+
|
106 |
+
class Attention(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
109 |
+
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
|
110 |
+
super().__init__()
|
111 |
+
self.num_heads = num_heads
|
112 |
+
head_dim = dim // num_heads
|
113 |
+
if attn_head_dim is not None:
|
114 |
+
head_dim = attn_head_dim
|
115 |
+
all_head_dim = head_dim * self.num_heads
|
116 |
+
self.scale = qk_scale or head_dim ** -0.5
|
117 |
+
|
118 |
+
self.subln = subln
|
119 |
+
if self.subln:
|
120 |
+
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
121 |
+
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
122 |
+
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
123 |
+
else:
|
124 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
125 |
+
|
126 |
+
if qkv_bias:
|
127 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
128 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
129 |
+
else:
|
130 |
+
self.q_bias = None
|
131 |
+
self.v_bias = None
|
132 |
+
|
133 |
+
if window_size:
|
134 |
+
self.window_size = window_size
|
135 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
136 |
+
self.relative_position_bias_table = nn.Parameter(
|
137 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
138 |
+
# cls to token & token 2 cls & cls to cls
|
139 |
+
|
140 |
+
# get pair-wise relative position index for each token inside the window
|
141 |
+
coords_h = torch.arange(window_size[0])
|
142 |
+
coords_w = torch.arange(window_size[1])
|
143 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
144 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
145 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
146 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
147 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
148 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
149 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
150 |
+
relative_position_index = \
|
151 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
152 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
153 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
154 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
155 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
156 |
+
|
157 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
158 |
+
else:
|
159 |
+
self.window_size = None
|
160 |
+
self.relative_position_bias_table = None
|
161 |
+
self.relative_position_index = None
|
162 |
+
|
163 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
164 |
+
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
165 |
+
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
166 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
167 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
168 |
+
self.xattn = xattn
|
169 |
+
self.xattn_drop = attn_drop
|
170 |
+
|
171 |
+
self.rope = rope
|
172 |
+
|
173 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
174 |
+
B, N, C = x.shape
|
175 |
+
if self.subln:
|
176 |
+
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
177 |
+
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
|
178 |
+
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
179 |
+
|
180 |
+
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
|
181 |
+
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
182 |
+
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
183 |
+
else:
|
184 |
+
|
185 |
+
qkv_bias = None
|
186 |
+
if self.q_bias is not None:
|
187 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
188 |
+
|
189 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
190 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
|
191 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
192 |
+
|
193 |
+
if self.rope:
|
194 |
+
# slightly fast impl
|
195 |
+
q_t = q[:, :, 1:, :]
|
196 |
+
ro_q_t = self.rope(q_t)
|
197 |
+
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
198 |
+
|
199 |
+
k_t = k[:, :, 1:, :]
|
200 |
+
ro_k_t = self.rope(k_t)
|
201 |
+
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
202 |
+
|
203 |
+
if self.xattn:
|
204 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
205 |
+
k = k.permute(0, 2, 1, 3)
|
206 |
+
v = v.permute(0, 2, 1, 3)
|
207 |
+
|
208 |
+
x = xops.memory_efficient_attention(
|
209 |
+
q, k, v,
|
210 |
+
p=self.xattn_drop,
|
211 |
+
scale=self.scale,
|
212 |
+
)
|
213 |
+
x = x.reshape(B, N, -1)
|
214 |
+
x = self.inner_attn_ln(x)
|
215 |
+
x = self.proj(x)
|
216 |
+
x = self.proj_drop(x)
|
217 |
+
else:
|
218 |
+
q = q * self.scale
|
219 |
+
attn = (q @ k.transpose(-2, -1))
|
220 |
+
|
221 |
+
if self.relative_position_bias_table is not None:
|
222 |
+
relative_position_bias = \
|
223 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
224 |
+
self.window_size[0] * self.window_size[1] + 1,
|
225 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
226 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
227 |
+
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
228 |
+
|
229 |
+
if rel_pos_bias is not None:
|
230 |
+
attn = attn + rel_pos_bias.type_as(attn)
|
231 |
+
|
232 |
+
if attn_mask is not None:
|
233 |
+
attn_mask = attn_mask.bool()
|
234 |
+
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
|
235 |
+
|
236 |
+
attn = attn.softmax(dim=-1)
|
237 |
+
attn = self.attn_drop(attn)
|
238 |
+
|
239 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
240 |
+
x = self.inner_attn_ln(x)
|
241 |
+
x = self.proj(x)
|
242 |
+
x = self.proj_drop(x)
|
243 |
+
return x
|
244 |
+
|
245 |
+
|
246 |
+
class Block(nn.Module):
|
247 |
+
|
248 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
249 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
250 |
+
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
|
251 |
+
subln=False, naiveswiglu=False):
|
252 |
+
super().__init__()
|
253 |
+
self.norm1 = norm_layer(dim)
|
254 |
+
self.attn = Attention(
|
255 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
256 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
|
257 |
+
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
|
258 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
259 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
260 |
+
self.norm2 = norm_layer(dim)
|
261 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
262 |
+
|
263 |
+
if naiveswiglu:
|
264 |
+
self.mlp = SwiGLU(
|
265 |
+
in_features=dim,
|
266 |
+
hidden_features=mlp_hidden_dim,
|
267 |
+
subln=subln,
|
268 |
+
norm_layer=norm_layer,
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
self.mlp = Mlp(
|
272 |
+
in_features=dim,
|
273 |
+
hidden_features=mlp_hidden_dim,
|
274 |
+
act_layer=act_layer,
|
275 |
+
subln=subln,
|
276 |
+
drop=drop
|
277 |
+
)
|
278 |
+
|
279 |
+
if init_values is not None and init_values > 0:
|
280 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
281 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
282 |
+
else:
|
283 |
+
self.gamma_1, self.gamma_2 = None, None
|
284 |
+
|
285 |
+
self.postnorm = postnorm
|
286 |
+
|
287 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
288 |
+
if self.gamma_1 is None:
|
289 |
+
if self.postnorm:
|
290 |
+
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
291 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
292 |
+
else:
|
293 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
294 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
295 |
+
else:
|
296 |
+
if self.postnorm:
|
297 |
+
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
298 |
+
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
299 |
+
else:
|
300 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
301 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
302 |
+
return x
|
303 |
+
|
304 |
+
|
305 |
+
class PatchEmbed(nn.Module):
|
306 |
+
""" Image to Patch Embedding
|
307 |
+
"""
|
308 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
309 |
+
super().__init__()
|
310 |
+
img_size = to_2tuple(img_size)
|
311 |
+
patch_size = to_2tuple(patch_size)
|
312 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
313 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
314 |
+
self.img_size = img_size
|
315 |
+
self.patch_size = patch_size
|
316 |
+
self.num_patches = num_patches
|
317 |
+
|
318 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
319 |
+
|
320 |
+
def forward(self, x, **kwargs):
|
321 |
+
B, C, H, W = x.shape
|
322 |
+
# FIXME look at relaxing size constraints
|
323 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
324 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
325 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
326 |
+
return x
|
327 |
+
|
328 |
+
|
329 |
+
class RelativePositionBias(nn.Module):
|
330 |
+
|
331 |
+
def __init__(self, window_size, num_heads):
|
332 |
+
super().__init__()
|
333 |
+
self.window_size = window_size
|
334 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
335 |
+
self.relative_position_bias_table = nn.Parameter(
|
336 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
337 |
+
# cls to token & token 2 cls & cls to cls
|
338 |
+
|
339 |
+
# get pair-wise relative position index for each token inside the window
|
340 |
+
coords_h = torch.arange(window_size[0])
|
341 |
+
coords_w = torch.arange(window_size[1])
|
342 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
343 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
344 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
345 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
346 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
347 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
348 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
349 |
+
relative_position_index = \
|
350 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
351 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
352 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
353 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
354 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
355 |
+
|
356 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
357 |
+
|
358 |
+
def forward(self):
|
359 |
+
relative_position_bias = \
|
360 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
361 |
+
self.window_size[0] * self.window_size[1] + 1,
|
362 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
363 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
364 |
+
|
365 |
+
|
366 |
+
class EVAVisionTransformer(nn.Module):
|
367 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
368 |
+
"""
|
369 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
370 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
371 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
|
372 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
|
373 |
+
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
|
374 |
+
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
|
375 |
+
super().__init__()
|
376 |
+
|
377 |
+
if not XFORMERS_IS_AVAILBLE:
|
378 |
+
xattn = False
|
379 |
+
|
380 |
+
self.image_size = img_size
|
381 |
+
self.num_classes = num_classes
|
382 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
383 |
+
|
384 |
+
self.patch_embed = PatchEmbed(
|
385 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
386 |
+
num_patches = self.patch_embed.num_patches
|
387 |
+
|
388 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
389 |
+
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
390 |
+
if use_abs_pos_emb:
|
391 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
392 |
+
else:
|
393 |
+
self.pos_embed = None
|
394 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
395 |
+
|
396 |
+
if use_shared_rel_pos_bias:
|
397 |
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
398 |
+
else:
|
399 |
+
self.rel_pos_bias = None
|
400 |
+
|
401 |
+
if rope:
|
402 |
+
half_head_dim = embed_dim // num_heads // 2
|
403 |
+
hw_seq_len = img_size // patch_size
|
404 |
+
self.rope = VisionRotaryEmbeddingFast(
|
405 |
+
dim=half_head_dim,
|
406 |
+
pt_seq_len=pt_hw_seq_len,
|
407 |
+
ft_seq_len=hw_seq_len if intp_freq else None,
|
408 |
+
# patch_dropout=patch_dropout
|
409 |
+
)
|
410 |
+
else:
|
411 |
+
self.rope = None
|
412 |
+
|
413 |
+
self.naiveswiglu = naiveswiglu
|
414 |
+
|
415 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
416 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
417 |
+
self.blocks = nn.ModuleList([
|
418 |
+
Block(
|
419 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
420 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
421 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
422 |
+
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
|
423 |
+
for i in range(depth)])
|
424 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
425 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
426 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
427 |
+
|
428 |
+
if self.pos_embed is not None:
|
429 |
+
trunc_normal_(self.pos_embed, std=.02)
|
430 |
+
|
431 |
+
trunc_normal_(self.cls_token, std=.02)
|
432 |
+
# trunc_normal_(self.mask_token, std=.02)
|
433 |
+
|
434 |
+
self.apply(self._init_weights)
|
435 |
+
self.fix_init_weight()
|
436 |
+
|
437 |
+
if isinstance(self.head, nn.Linear):
|
438 |
+
trunc_normal_(self.head.weight, std=.02)
|
439 |
+
self.head.weight.data.mul_(init_scale)
|
440 |
+
self.head.bias.data.mul_(init_scale)
|
441 |
+
|
442 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
443 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
444 |
+
|
445 |
+
self.grad_checkpointing = grad_checkpointing
|
446 |
+
|
447 |
+
def fix_init_weight(self):
|
448 |
+
def rescale(param, layer_id):
|
449 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
450 |
+
|
451 |
+
for layer_id, layer in enumerate(self.blocks):
|
452 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
453 |
+
if self.naiveswiglu:
|
454 |
+
rescale(layer.mlp.w3.weight.data, layer_id + 1)
|
455 |
+
else:
|
456 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
457 |
+
|
458 |
+
def get_cast_dtype(self) -> torch.dtype:
|
459 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
460 |
+
|
461 |
+
def _init_weights(self, m):
|
462 |
+
if isinstance(m, nn.Linear):
|
463 |
+
trunc_normal_(m.weight, std=.02)
|
464 |
+
if m.bias is not None:
|
465 |
+
nn.init.constant_(m.bias, 0)
|
466 |
+
elif isinstance(m, nn.LayerNorm):
|
467 |
+
nn.init.constant_(m.bias, 0)
|
468 |
+
nn.init.constant_(m.weight, 1.0)
|
469 |
+
|
470 |
+
def get_num_layers(self):
|
471 |
+
return len(self.blocks)
|
472 |
+
|
473 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
474 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
475 |
+
for param in self.parameters():
|
476 |
+
param.requires_grad = False
|
477 |
+
|
478 |
+
@torch.jit.ignore
|
479 |
+
def set_grad_checkpointing(self, enable=True):
|
480 |
+
self.grad_checkpointing = enable
|
481 |
+
|
482 |
+
@torch.jit.ignore
|
483 |
+
def no_weight_decay(self):
|
484 |
+
return {'pos_embed', 'cls_token'}
|
485 |
+
|
486 |
+
def get_classifier(self):
|
487 |
+
return self.head
|
488 |
+
|
489 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
490 |
+
self.num_classes = num_classes
|
491 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
492 |
+
|
493 |
+
def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
494 |
+
|
495 |
+
x = self.patch_embed(x)
|
496 |
+
batch_size, seq_len, _ = x.size()
|
497 |
+
|
498 |
+
if shuffle:
|
499 |
+
idx = torch.randperm(x.shape[1]) + 1
|
500 |
+
zero = torch.LongTensor([0, ])
|
501 |
+
idx = torch.cat([zero, idx])
|
502 |
+
pos_embed = self.pos_embed[:, idx]
|
503 |
+
|
504 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
505 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
506 |
+
if shuffle:
|
507 |
+
x = x + pos_embed
|
508 |
+
elif self.pos_embed is not None:
|
509 |
+
x = x + self.pos_embed
|
510 |
+
x = self.pos_drop(x)
|
511 |
+
|
512 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
513 |
+
if os.getenv('RoPE') == '1':
|
514 |
+
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
515 |
+
x, patch_indices_keep = self.patch_dropout(x)
|
516 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
|
517 |
+
else:
|
518 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
519 |
+
x = self.patch_dropout(x)
|
520 |
+
else:
|
521 |
+
x = self.patch_dropout(x)
|
522 |
+
|
523 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
524 |
+
hidden_states = []
|
525 |
+
for idx, blk in enumerate(self.blocks):
|
526 |
+
if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden:
|
527 |
+
hidden_states.append(x)
|
528 |
+
if self.grad_checkpointing:
|
529 |
+
x = checkpoint(blk, x, (rel_pos_bias,))
|
530 |
+
else:
|
531 |
+
x = blk(x, rel_pos_bias=rel_pos_bias)
|
532 |
+
|
533 |
+
if not return_all_features:
|
534 |
+
x = self.norm(x)
|
535 |
+
if self.fc_norm is not None:
|
536 |
+
return self.fc_norm(x.mean(1)), hidden_states
|
537 |
+
else:
|
538 |
+
return x[:, 0], hidden_states
|
539 |
+
return x
|
540 |
+
|
541 |
+
def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
542 |
+
if return_all_features:
|
543 |
+
return self.forward_features(x, return_all_features, return_hidden, shuffle)
|
544 |
+
x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle)
|
545 |
+
x = self.head(x)
|
546 |
+
if return_hidden:
|
547 |
+
return x, hidden_states
|
548 |
+
return x
|
PuLID_ComfyUI/eva_clip/factory.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import re
|
6 |
+
from copy import deepcopy
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Optional, Tuple, Union, Dict, Any
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
12 |
+
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
13 |
+
get_cast_dtype
|
14 |
+
from .openai import load_openai_model
|
15 |
+
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
|
16 |
+
from .transform import image_transform
|
17 |
+
from .tokenizer import HFTokenizer, tokenize
|
18 |
+
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
|
19 |
+
|
20 |
+
|
21 |
+
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
22 |
+
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
23 |
+
|
24 |
+
|
25 |
+
def _natural_key(string_):
|
26 |
+
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
27 |
+
|
28 |
+
|
29 |
+
def _rescan_model_configs():
|
30 |
+
global _MODEL_CONFIGS
|
31 |
+
|
32 |
+
config_ext = ('.json',)
|
33 |
+
config_files = []
|
34 |
+
for config_path in _MODEL_CONFIG_PATHS:
|
35 |
+
if config_path.is_file() and config_path.suffix in config_ext:
|
36 |
+
config_files.append(config_path)
|
37 |
+
elif config_path.is_dir():
|
38 |
+
for ext in config_ext:
|
39 |
+
config_files.extend(config_path.glob(f'*{ext}'))
|
40 |
+
|
41 |
+
for cf in config_files:
|
42 |
+
with open(cf, "r", encoding="utf8") as f:
|
43 |
+
model_cfg = json.load(f)
|
44 |
+
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
45 |
+
_MODEL_CONFIGS[cf.stem] = model_cfg
|
46 |
+
|
47 |
+
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
|
48 |
+
|
49 |
+
|
50 |
+
_rescan_model_configs() # initial populate of model config registry
|
51 |
+
|
52 |
+
|
53 |
+
def list_models():
|
54 |
+
""" enumerate available model architectures based on config files """
|
55 |
+
return list(_MODEL_CONFIGS.keys())
|
56 |
+
|
57 |
+
|
58 |
+
def add_model_config(path):
|
59 |
+
""" add model config path or file and update registry """
|
60 |
+
if not isinstance(path, Path):
|
61 |
+
path = Path(path)
|
62 |
+
_MODEL_CONFIG_PATHS.append(path)
|
63 |
+
_rescan_model_configs()
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_config(model_name):
|
67 |
+
if model_name in _MODEL_CONFIGS:
|
68 |
+
return deepcopy(_MODEL_CONFIGS[model_name])
|
69 |
+
else:
|
70 |
+
return None
|
71 |
+
|
72 |
+
|
73 |
+
def get_tokenizer(model_name):
|
74 |
+
config = get_model_config(model_name)
|
75 |
+
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
|
76 |
+
return tokenizer
|
77 |
+
|
78 |
+
|
79 |
+
# loading openai CLIP weights when is_openai=True for training
|
80 |
+
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
|
81 |
+
if is_openai:
|
82 |
+
model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
|
83 |
+
state_dict = model.state_dict()
|
84 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
85 |
+
state_dict.pop(key, None)
|
86 |
+
else:
|
87 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
88 |
+
for mk in model_key.split('|'):
|
89 |
+
if isinstance(checkpoint, dict) and mk in checkpoint:
|
90 |
+
state_dict = checkpoint[mk]
|
91 |
+
break
|
92 |
+
else:
|
93 |
+
state_dict = checkpoint
|
94 |
+
if next(iter(state_dict.items()))[0].startswith('module'):
|
95 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
96 |
+
|
97 |
+
for k in skip_list:
|
98 |
+
if k in list(state_dict.keys()):
|
99 |
+
logging.info(f"Removing key {k} from pretrained checkpoint")
|
100 |
+
del state_dict[k]
|
101 |
+
|
102 |
+
if os.getenv('RoPE') == '1':
|
103 |
+
for k in list(state_dict.keys()):
|
104 |
+
if 'freqs_cos' in k or 'freqs_sin' in k:
|
105 |
+
del state_dict[k]
|
106 |
+
return state_dict
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
|
111 |
+
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
|
112 |
+
# detect old format and make compatible with new format
|
113 |
+
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
114 |
+
state_dict = convert_to_custom_text_state_dict(state_dict)
|
115 |
+
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
|
116 |
+
state_dict['logit_scale'] = state_dict['text.logit_scale']
|
117 |
+
del state_dict['text.logit_scale']
|
118 |
+
|
119 |
+
# resize_clip_pos_embed for CLIP and open CLIP
|
120 |
+
if 'visual.positional_embedding' in state_dict:
|
121 |
+
resize_clip_pos_embed(state_dict, model)
|
122 |
+
# specified to eva_vit_model
|
123 |
+
elif 'visual.pos_embed' in state_dict:
|
124 |
+
resize_evaclip_pos_embed(state_dict, model)
|
125 |
+
|
126 |
+
# resize_clip_pos_embed(state_dict, model)
|
127 |
+
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
128 |
+
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
|
129 |
+
return incompatible_keys
|
130 |
+
|
131 |
+
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
132 |
+
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
133 |
+
|
134 |
+
for k in list(state_dict.keys()):
|
135 |
+
if not k.startswith('visual.'):
|
136 |
+
del state_dict[k]
|
137 |
+
for k in list(state_dict.keys()):
|
138 |
+
if k.startswith('visual.'):
|
139 |
+
new_k = k[7:]
|
140 |
+
state_dict[new_k] = state_dict[k]
|
141 |
+
del state_dict[k]
|
142 |
+
return state_dict
|
143 |
+
|
144 |
+
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
145 |
+
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
146 |
+
|
147 |
+
for k in list(state_dict.keys()):
|
148 |
+
if k.startswith('visual.'):
|
149 |
+
del state_dict[k]
|
150 |
+
return state_dict
|
151 |
+
|
152 |
+
def get_pretrained_tag(pretrained_model):
|
153 |
+
pretrained_model = pretrained_model.lower()
|
154 |
+
if "laion" in pretrained_model or "open_clip" in pretrained_model:
|
155 |
+
return "open_clip"
|
156 |
+
elif "openai" in pretrained_model:
|
157 |
+
return "clip"
|
158 |
+
elif "eva" in pretrained_model and "clip" in pretrained_model:
|
159 |
+
return "eva_clip"
|
160 |
+
else:
|
161 |
+
return "other"
|
162 |
+
|
163 |
+
def load_pretrained_checkpoint(
|
164 |
+
model,
|
165 |
+
visual_checkpoint_path,
|
166 |
+
text_checkpoint_path,
|
167 |
+
strict=True,
|
168 |
+
visual_model=None,
|
169 |
+
text_model=None,
|
170 |
+
model_key="model|module|state_dict",
|
171 |
+
skip_list=[]):
|
172 |
+
visual_tag = get_pretrained_tag(visual_model)
|
173 |
+
text_tag = get_pretrained_tag(text_model)
|
174 |
+
|
175 |
+
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
|
176 |
+
visual_incompatible_keys, text_incompatible_keys = None, None
|
177 |
+
if visual_checkpoint_path:
|
178 |
+
if visual_tag == "eva_clip" or visual_tag == "open_clip":
|
179 |
+
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
|
180 |
+
elif visual_tag == "clip":
|
181 |
+
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
|
182 |
+
else:
|
183 |
+
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
184 |
+
|
185 |
+
# resize_clip_pos_embed for CLIP and open CLIP
|
186 |
+
if 'positional_embedding' in visual_state_dict:
|
187 |
+
resize_visual_pos_embed(visual_state_dict, model)
|
188 |
+
# specified to EVA model
|
189 |
+
elif 'pos_embed' in visual_state_dict:
|
190 |
+
resize_eva_pos_embed(visual_state_dict, model)
|
191 |
+
|
192 |
+
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
|
193 |
+
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
|
194 |
+
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
|
195 |
+
|
196 |
+
if text_checkpoint_path:
|
197 |
+
if text_tag == "eva_clip" or text_tag == "open_clip":
|
198 |
+
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
|
199 |
+
elif text_tag == "clip":
|
200 |
+
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
|
201 |
+
else:
|
202 |
+
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
203 |
+
|
204 |
+
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
|
205 |
+
|
206 |
+
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
|
207 |
+
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
|
208 |
+
|
209 |
+
return visual_incompatible_keys, text_incompatible_keys
|
210 |
+
|
211 |
+
def create_model(
|
212 |
+
model_name: str,
|
213 |
+
pretrained: Optional[str] = None,
|
214 |
+
precision: str = 'fp32',
|
215 |
+
device: Union[str, torch.device] = 'cpu',
|
216 |
+
jit: bool = False,
|
217 |
+
force_quick_gelu: bool = False,
|
218 |
+
force_custom_clip: bool = False,
|
219 |
+
force_patch_dropout: Optional[float] = None,
|
220 |
+
pretrained_image: str = '',
|
221 |
+
pretrained_text: str = '',
|
222 |
+
pretrained_hf: bool = True,
|
223 |
+
pretrained_visual_model: str = None,
|
224 |
+
pretrained_text_model: str = None,
|
225 |
+
cache_dir: Optional[str] = None,
|
226 |
+
skip_list: list = [],
|
227 |
+
):
|
228 |
+
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
229 |
+
if isinstance(device, str):
|
230 |
+
device = torch.device(device)
|
231 |
+
|
232 |
+
if pretrained and pretrained.lower() == 'openai':
|
233 |
+
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
234 |
+
model = load_openai_model(
|
235 |
+
model_name,
|
236 |
+
precision=precision,
|
237 |
+
device=device,
|
238 |
+
jit=jit,
|
239 |
+
cache_dir=cache_dir,
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
model_cfg = get_model_config(model_name)
|
243 |
+
if model_cfg is not None:
|
244 |
+
logging.info(f'Loaded {model_name} model config.')
|
245 |
+
else:
|
246 |
+
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
247 |
+
raise RuntimeError(f'Model config for {model_name} not found.')
|
248 |
+
|
249 |
+
if 'rope' in model_cfg.get('vision_cfg', {}):
|
250 |
+
if model_cfg['vision_cfg']['rope']:
|
251 |
+
os.environ['RoPE'] = "1"
|
252 |
+
else:
|
253 |
+
os.environ['RoPE'] = "0"
|
254 |
+
|
255 |
+
if force_quick_gelu:
|
256 |
+
# override for use of QuickGELU on non-OpenAI transformer models
|
257 |
+
model_cfg["quick_gelu"] = True
|
258 |
+
|
259 |
+
if force_patch_dropout is not None:
|
260 |
+
# override the default patch dropout value
|
261 |
+
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
|
262 |
+
|
263 |
+
cast_dtype = get_cast_dtype(precision)
|
264 |
+
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
|
265 |
+
|
266 |
+
|
267 |
+
if custom_clip:
|
268 |
+
if 'hf_model_name' in model_cfg.get('text_cfg', {}):
|
269 |
+
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
|
270 |
+
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
|
271 |
+
else:
|
272 |
+
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
273 |
+
|
274 |
+
pretrained_cfg = {}
|
275 |
+
if pretrained:
|
276 |
+
checkpoint_path = ''
|
277 |
+
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
278 |
+
if pretrained_cfg:
|
279 |
+
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
280 |
+
elif os.path.exists(pretrained):
|
281 |
+
checkpoint_path = pretrained
|
282 |
+
|
283 |
+
if checkpoint_path:
|
284 |
+
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
285 |
+
load_checkpoint(model,
|
286 |
+
checkpoint_path,
|
287 |
+
model_key="model|module|state_dict",
|
288 |
+
strict=False
|
289 |
+
)
|
290 |
+
else:
|
291 |
+
error_str = (
|
292 |
+
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
293 |
+
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
294 |
+
logging.warning(error_str)
|
295 |
+
raise RuntimeError(error_str)
|
296 |
+
else:
|
297 |
+
visual_checkpoint_path = ''
|
298 |
+
text_checkpoint_path = ''
|
299 |
+
|
300 |
+
if pretrained_image:
|
301 |
+
pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
|
302 |
+
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
|
303 |
+
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
|
304 |
+
# pretrained weight loading for timm models set via vision_cfg
|
305 |
+
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
306 |
+
elif pretrained_image_cfg:
|
307 |
+
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
|
308 |
+
elif os.path.exists(pretrained_image):
|
309 |
+
visual_checkpoint_path = pretrained_image
|
310 |
+
else:
|
311 |
+
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
312 |
+
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
313 |
+
|
314 |
+
if pretrained_text:
|
315 |
+
pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
|
316 |
+
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
|
317 |
+
if pretrained_image_cfg:
|
318 |
+
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
|
319 |
+
elif os.path.exists(pretrained_text):
|
320 |
+
text_checkpoint_path = pretrained_text
|
321 |
+
else:
|
322 |
+
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
323 |
+
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
324 |
+
|
325 |
+
if visual_checkpoint_path:
|
326 |
+
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
|
327 |
+
if text_checkpoint_path:
|
328 |
+
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
|
329 |
+
|
330 |
+
if visual_checkpoint_path or text_checkpoint_path:
|
331 |
+
load_pretrained_checkpoint(
|
332 |
+
model,
|
333 |
+
visual_checkpoint_path,
|
334 |
+
text_checkpoint_path,
|
335 |
+
strict=False,
|
336 |
+
visual_model=pretrained_visual_model,
|
337 |
+
text_model=pretrained_text_model,
|
338 |
+
model_key="model|module|state_dict",
|
339 |
+
skip_list=skip_list
|
340 |
+
)
|
341 |
+
|
342 |
+
if "fp16" in precision or "bf16" in precision:
|
343 |
+
logging.info(f'convert precision to {precision}')
|
344 |
+
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
|
345 |
+
|
346 |
+
model.to(device=device)
|
347 |
+
|
348 |
+
# set image / mean metadata from pretrained_cfg if available, or use default
|
349 |
+
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
|
350 |
+
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
|
351 |
+
|
352 |
+
if jit:
|
353 |
+
model = torch.jit.script(model)
|
354 |
+
|
355 |
+
return model
|
356 |
+
|
357 |
+
|
358 |
+
def create_model_and_transforms(
|
359 |
+
model_name: str,
|
360 |
+
pretrained: Optional[str] = None,
|
361 |
+
precision: str = 'fp32',
|
362 |
+
device: Union[str, torch.device] = 'cpu',
|
363 |
+
jit: bool = False,
|
364 |
+
force_quick_gelu: bool = False,
|
365 |
+
force_custom_clip: bool = False,
|
366 |
+
force_patch_dropout: Optional[float] = None,
|
367 |
+
pretrained_image: str = '',
|
368 |
+
pretrained_text: str = '',
|
369 |
+
pretrained_hf: bool = True,
|
370 |
+
pretrained_visual_model: str = None,
|
371 |
+
pretrained_text_model: str = None,
|
372 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
373 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
374 |
+
cache_dir: Optional[str] = None,
|
375 |
+
skip_list: list = [],
|
376 |
+
):
|
377 |
+
model = create_model(
|
378 |
+
model_name,
|
379 |
+
pretrained,
|
380 |
+
precision=precision,
|
381 |
+
device=device,
|
382 |
+
jit=jit,
|
383 |
+
force_quick_gelu=force_quick_gelu,
|
384 |
+
force_custom_clip=force_custom_clip,
|
385 |
+
force_patch_dropout=force_patch_dropout,
|
386 |
+
pretrained_image=pretrained_image,
|
387 |
+
pretrained_text=pretrained_text,
|
388 |
+
pretrained_hf=pretrained_hf,
|
389 |
+
pretrained_visual_model=pretrained_visual_model,
|
390 |
+
pretrained_text_model=pretrained_text_model,
|
391 |
+
cache_dir=cache_dir,
|
392 |
+
skip_list=skip_list,
|
393 |
+
)
|
394 |
+
|
395 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
396 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
397 |
+
preprocess_train = image_transform(
|
398 |
+
model.visual.image_size,
|
399 |
+
is_train=True,
|
400 |
+
mean=image_mean,
|
401 |
+
std=image_std
|
402 |
+
)
|
403 |
+
preprocess_val = image_transform(
|
404 |
+
model.visual.image_size,
|
405 |
+
is_train=False,
|
406 |
+
mean=image_mean,
|
407 |
+
std=image_std
|
408 |
+
)
|
409 |
+
|
410 |
+
return model, preprocess_train, preprocess_val
|
411 |
+
|
412 |
+
|
413 |
+
def create_transforms(
|
414 |
+
model_name: str,
|
415 |
+
pretrained: Optional[str] = None,
|
416 |
+
precision: str = 'fp32',
|
417 |
+
device: Union[str, torch.device] = 'cpu',
|
418 |
+
jit: bool = False,
|
419 |
+
force_quick_gelu: bool = False,
|
420 |
+
force_custom_clip: bool = False,
|
421 |
+
force_patch_dropout: Optional[float] = None,
|
422 |
+
pretrained_image: str = '',
|
423 |
+
pretrained_text: str = '',
|
424 |
+
pretrained_hf: bool = True,
|
425 |
+
pretrained_visual_model: str = None,
|
426 |
+
pretrained_text_model: str = None,
|
427 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
428 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
429 |
+
cache_dir: Optional[str] = None,
|
430 |
+
skip_list: list = [],
|
431 |
+
):
|
432 |
+
model = create_model(
|
433 |
+
model_name,
|
434 |
+
pretrained,
|
435 |
+
precision=precision,
|
436 |
+
device=device,
|
437 |
+
jit=jit,
|
438 |
+
force_quick_gelu=force_quick_gelu,
|
439 |
+
force_custom_clip=force_custom_clip,
|
440 |
+
force_patch_dropout=force_patch_dropout,
|
441 |
+
pretrained_image=pretrained_image,
|
442 |
+
pretrained_text=pretrained_text,
|
443 |
+
pretrained_hf=pretrained_hf,
|
444 |
+
pretrained_visual_model=pretrained_visual_model,
|
445 |
+
pretrained_text_model=pretrained_text_model,
|
446 |
+
cache_dir=cache_dir,
|
447 |
+
skip_list=skip_list,
|
448 |
+
)
|
449 |
+
|
450 |
+
|
451 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
452 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
453 |
+
preprocess_train = image_transform(
|
454 |
+
model.visual.image_size,
|
455 |
+
is_train=True,
|
456 |
+
mean=image_mean,
|
457 |
+
std=image_std
|
458 |
+
)
|
459 |
+
preprocess_val = image_transform(
|
460 |
+
model.visual.image_size,
|
461 |
+
is_train=False,
|
462 |
+
mean=image_mean,
|
463 |
+
std=image_std
|
464 |
+
)
|
465 |
+
del model
|
466 |
+
|
467 |
+
return preprocess_train, preprocess_val
|
468 |
+
|
469 |
+
def create_model_from_pretrained(
|
470 |
+
model_name: str,
|
471 |
+
pretrained: str,
|
472 |
+
precision: str = 'fp32',
|
473 |
+
device: Union[str, torch.device] = 'cpu',
|
474 |
+
jit: bool = False,
|
475 |
+
force_quick_gelu: bool = False,
|
476 |
+
force_custom_clip: bool = False,
|
477 |
+
force_patch_dropout: Optional[float] = None,
|
478 |
+
return_transform: bool = True,
|
479 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
480 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
481 |
+
cache_dir: Optional[str] = None,
|
482 |
+
is_frozen: bool = False,
|
483 |
+
):
|
484 |
+
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
|
485 |
+
raise RuntimeError(
|
486 |
+
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
|
487 |
+
f' Use open_clip.list_pretrained() to find one.')
|
488 |
+
|
489 |
+
model = create_model(
|
490 |
+
model_name,
|
491 |
+
pretrained,
|
492 |
+
precision=precision,
|
493 |
+
device=device,
|
494 |
+
jit=jit,
|
495 |
+
force_quick_gelu=force_quick_gelu,
|
496 |
+
force_custom_clip=force_custom_clip,
|
497 |
+
force_patch_dropout=force_patch_dropout,
|
498 |
+
cache_dir=cache_dir,
|
499 |
+
)
|
500 |
+
|
501 |
+
if is_frozen:
|
502 |
+
for param in model.parameters():
|
503 |
+
param.requires_grad = False
|
504 |
+
|
505 |
+
if not return_transform:
|
506 |
+
return model
|
507 |
+
|
508 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
509 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
510 |
+
preprocess = image_transform(
|
511 |
+
model.visual.image_size,
|
512 |
+
is_train=False,
|
513 |
+
mean=image_mean,
|
514 |
+
std=image_std
|
515 |
+
)
|
516 |
+
|
517 |
+
return model, preprocess
|
PuLID_ComfyUI/eva_clip/hf_configs.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HF architecture dict:
|
2 |
+
arch_dict = {
|
3 |
+
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
4 |
+
"roberta": {
|
5 |
+
"config_names": {
|
6 |
+
"context_length": "max_position_embeddings",
|
7 |
+
"vocab_size": "vocab_size",
|
8 |
+
"width": "hidden_size",
|
9 |
+
"heads": "num_attention_heads",
|
10 |
+
"layers": "num_hidden_layers",
|
11 |
+
"layer_attr": "layer",
|
12 |
+
"token_embeddings_attr": "embeddings"
|
13 |
+
},
|
14 |
+
"pooler": "mean_pooler",
|
15 |
+
},
|
16 |
+
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
17 |
+
"xlm-roberta": {
|
18 |
+
"config_names": {
|
19 |
+
"context_length": "max_position_embeddings",
|
20 |
+
"vocab_size": "vocab_size",
|
21 |
+
"width": "hidden_size",
|
22 |
+
"heads": "num_attention_heads",
|
23 |
+
"layers": "num_hidden_layers",
|
24 |
+
"layer_attr": "layer",
|
25 |
+
"token_embeddings_attr": "embeddings"
|
26 |
+
},
|
27 |
+
"pooler": "mean_pooler",
|
28 |
+
},
|
29 |
+
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
30 |
+
"mt5": {
|
31 |
+
"config_names": {
|
32 |
+
# unlimited seqlen
|
33 |
+
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
34 |
+
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
35 |
+
"context_length": "",
|
36 |
+
"vocab_size": "vocab_size",
|
37 |
+
"width": "d_model",
|
38 |
+
"heads": "num_heads",
|
39 |
+
"layers": "num_layers",
|
40 |
+
"layer_attr": "block",
|
41 |
+
"token_embeddings_attr": "embed_tokens"
|
42 |
+
},
|
43 |
+
"pooler": "mean_pooler",
|
44 |
+
},
|
45 |
+
"bert": {
|
46 |
+
"config_names": {
|
47 |
+
"context_length": "max_position_embeddings",
|
48 |
+
"vocab_size": "vocab_size",
|
49 |
+
"width": "hidden_size",
|
50 |
+
"heads": "num_attention_heads",
|
51 |
+
"layers": "num_hidden_layers",
|
52 |
+
"layer_attr": "layer",
|
53 |
+
"token_embeddings_attr": "embeddings"
|
54 |
+
},
|
55 |
+
"pooler": "mean_pooler",
|
56 |
+
}
|
57 |
+
}
|
PuLID_ComfyUI/eva_clip/hf_model.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" huggingface model adapter
|
2 |
+
|
3 |
+
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import re
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch import TensorType
|
12 |
+
try:
|
13 |
+
import transformers
|
14 |
+
from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig
|
15 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
|
16 |
+
BaseModelOutputWithPoolingAndCrossAttentions
|
17 |
+
except ImportError as e:
|
18 |
+
transformers = None
|
19 |
+
|
20 |
+
|
21 |
+
class BaseModelOutput:
|
22 |
+
pass
|
23 |
+
|
24 |
+
|
25 |
+
class PretrainedConfig:
|
26 |
+
pass
|
27 |
+
|
28 |
+
from .hf_configs import arch_dict
|
29 |
+
|
30 |
+
# utils
|
31 |
+
def _camel2snake(s):
|
32 |
+
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
33 |
+
|
34 |
+
# TODO: ?last - for gpt-like models
|
35 |
+
_POOLERS = {}
|
36 |
+
|
37 |
+
def register_pooler(cls):
|
38 |
+
"""Decorator registering pooler class"""
|
39 |
+
_POOLERS[_camel2snake(cls.__name__)] = cls
|
40 |
+
return cls
|
41 |
+
|
42 |
+
|
43 |
+
@register_pooler
|
44 |
+
class MeanPooler(nn.Module):
|
45 |
+
"""Mean pooling"""
|
46 |
+
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
47 |
+
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
48 |
+
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
49 |
+
|
50 |
+
@register_pooler
|
51 |
+
class MaxPooler(nn.Module):
|
52 |
+
"""Max pooling"""
|
53 |
+
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
54 |
+
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
|
55 |
+
return masked_output.max(1).values
|
56 |
+
|
57 |
+
@register_pooler
|
58 |
+
class ClsPooler(nn.Module):
|
59 |
+
"""CLS token pooling"""
|
60 |
+
def __init__(self, use_pooler_output=True):
|
61 |
+
super().__init__()
|
62 |
+
self.cls_token_position = 0
|
63 |
+
self.use_pooler_output = use_pooler_output
|
64 |
+
|
65 |
+
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
66 |
+
|
67 |
+
if (self.use_pooler_output and
|
68 |
+
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
|
69 |
+
(x.pooler_output is not None)
|
70 |
+
):
|
71 |
+
return x.pooler_output
|
72 |
+
|
73 |
+
return x.last_hidden_state[:, self.cls_token_position, :]
|
74 |
+
|
75 |
+
class HFTextEncoder(nn.Module):
|
76 |
+
"""HuggingFace model adapter"""
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
model_name_or_path: str,
|
80 |
+
output_dim: int,
|
81 |
+
tokenizer_name: str = None,
|
82 |
+
config: PretrainedConfig = None,
|
83 |
+
pooler_type: str = None,
|
84 |
+
proj: str = None,
|
85 |
+
pretrained: bool = True,
|
86 |
+
masked_language_modeling: bool = False):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
self.output_dim = output_dim
|
90 |
+
|
91 |
+
# TODO: find better way to get this information
|
92 |
+
uses_transformer_pooler = (pooler_type == "cls_pooler")
|
93 |
+
|
94 |
+
if transformers is None:
|
95 |
+
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
|
96 |
+
if config is None:
|
97 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path)
|
98 |
+
if masked_language_modeling:
|
99 |
+
create_func, model_args = (AutoModelForMaskedLM.from_pretrained, model_name_or_path) if pretrained else (
|
100 |
+
AutoModelForMaskedLM.from_config, self.config)
|
101 |
+
else:
|
102 |
+
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
|
103 |
+
AutoModel.from_config, self.config)
|
104 |
+
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
|
105 |
+
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
|
106 |
+
self.transformer = create_func(model_args)
|
107 |
+
self.transformer = self.transformer.encoder
|
108 |
+
else:
|
109 |
+
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
|
110 |
+
else:
|
111 |
+
self.config = config
|
112 |
+
if masked_language_modeling:
|
113 |
+
self.transformer = AutoModelForMaskedLM.from_config(config)
|
114 |
+
else:
|
115 |
+
self.transformer = AutoModel.from_config(config)
|
116 |
+
|
117 |
+
if pooler_type is None: # get default arch pooler
|
118 |
+
self.pooler = _POOLERS[(arch_dict[self.config.model_type]["pooler"])]()
|
119 |
+
else:
|
120 |
+
self.pooler = _POOLERS[pooler_type]()
|
121 |
+
|
122 |
+
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
|
123 |
+
if (d_model == output_dim) and (proj is None): # do we always need a proj?
|
124 |
+
self.proj = nn.Identity()
|
125 |
+
elif proj == 'linear':
|
126 |
+
self.proj = nn.Linear(d_model, output_dim, bias=False)
|
127 |
+
elif proj == 'mlp':
|
128 |
+
hidden_size = (d_model + output_dim) // 2
|
129 |
+
self.proj = nn.Sequential(
|
130 |
+
nn.Linear(d_model, hidden_size, bias=False),
|
131 |
+
nn.GELU(),
|
132 |
+
nn.Linear(hidden_size, output_dim, bias=False),
|
133 |
+
)
|
134 |
+
|
135 |
+
# self.itm_proj = nn.Linear(d_model, 2, bias=False)
|
136 |
+
# self.mlm_proj = nn.Linear(d_model, self.config.vocab_size), bias=False)
|
137 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
138 |
+
|
139 |
+
# def forward_itm(self, x:TensorType, image_embeds:TensorType) -> TensorType:
|
140 |
+
# image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device)
|
141 |
+
# attn_mask = (x != self.config.pad_token_id).long()
|
142 |
+
# out = self.transformer(
|
143 |
+
# input_ids=x,
|
144 |
+
# attention_mask=attn_mask,
|
145 |
+
# encoder_hidden_states = image_embeds,
|
146 |
+
# encoder_attention_mask = image_atts,
|
147 |
+
# )
|
148 |
+
# pooled_out = self.pooler(out, attn_mask)
|
149 |
+
|
150 |
+
# return self.itm_proj(pooled_out)
|
151 |
+
|
152 |
+
def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
|
153 |
+
if masked_indices is None:
|
154 |
+
masked_indices = torch.bernoulli(probability_matrix).bool()
|
155 |
+
|
156 |
+
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
|
157 |
+
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
|
158 |
+
|
159 |
+
if targets is not None:
|
160 |
+
targets[~masked_indices] = -100 # We only compute loss on masked tokens
|
161 |
+
|
162 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
163 |
+
indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
|
164 |
+
input_ids[indices_replaced] = self.tokenizer.mask_token_id
|
165 |
+
|
166 |
+
# 10% of the time, we replace masked input tokens with random word
|
167 |
+
indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
168 |
+
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
|
169 |
+
input_ids[indices_random] = random_words[indices_random]
|
170 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
171 |
+
|
172 |
+
if targets is not None:
|
173 |
+
return input_ids, targets
|
174 |
+
else:
|
175 |
+
return input_ids
|
176 |
+
|
177 |
+
def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25):
|
178 |
+
labels = input_ids.clone()
|
179 |
+
attn_mask = (input_ids != self.config.pad_token_id).long()
|
180 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device)
|
181 |
+
vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"])
|
182 |
+
probability_matrix = torch.full(labels.shape, mlm_probability)
|
183 |
+
input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels,
|
184 |
+
probability_matrix = probability_matrix)
|
185 |
+
mlm_output = self.transformer(input_ids,
|
186 |
+
attention_mask = attn_mask,
|
187 |
+
encoder_hidden_states = image_embeds,
|
188 |
+
encoder_attention_mask = image_atts,
|
189 |
+
return_dict = True,
|
190 |
+
labels = labels,
|
191 |
+
)
|
192 |
+
return mlm_output.loss
|
193 |
+
# mlm_output = self.transformer(input_ids,
|
194 |
+
# attention_mask = attn_mask,
|
195 |
+
# encoder_hidden_states = image_embeds,
|
196 |
+
# encoder_attention_mask = image_atts,
|
197 |
+
# return_dict = True,
|
198 |
+
# ).last_hidden_state
|
199 |
+
# logits = self.mlm_proj(mlm_output)
|
200 |
+
|
201 |
+
# # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size)
|
202 |
+
# logits = logits[:, 1:, :].contiguous().view(-1, vocab_size)
|
203 |
+
# labels = labels[:, 1:].contiguous().view(-1)
|
204 |
+
|
205 |
+
# mlm_loss = F.cross_entropy(
|
206 |
+
# logits,
|
207 |
+
# labels,
|
208 |
+
# # label_smoothing=0.1,
|
209 |
+
# )
|
210 |
+
# return mlm_loss
|
211 |
+
|
212 |
+
|
213 |
+
def forward(self, x:TensorType) -> TensorType:
|
214 |
+
attn_mask = (x != self.config.pad_token_id).long()
|
215 |
+
out = self.transformer(input_ids=x, attention_mask=attn_mask)
|
216 |
+
pooled_out = self.pooler(out, attn_mask)
|
217 |
+
|
218 |
+
return self.proj(pooled_out)
|
219 |
+
|
220 |
+
def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
221 |
+
if not unlocked_layers: # full freezing
|
222 |
+
for n, p in self.transformer.named_parameters():
|
223 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
224 |
+
return
|
225 |
+
|
226 |
+
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
227 |
+
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
228 |
+
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
229 |
+
embeddings = getattr(
|
230 |
+
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
231 |
+
modules = [embeddings, *layer_list][:-unlocked_layers]
|
232 |
+
# freeze layers
|
233 |
+
for module in modules:
|
234 |
+
for n, p in module.named_parameters():
|
235 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
236 |
+
|
237 |
+
|
238 |
+
@torch.jit.ignore
|
239 |
+
def set_grad_checkpointing(self, enable=True):
|
240 |
+
self.transformer.gradient_checkpointing_enable()
|
241 |
+
|
242 |
+
def get_num_layers(self):
|
243 |
+
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
244 |
+
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
245 |
+
return len(layer_list)
|
246 |
+
|
247 |
+
def init_parameters(self):
|
248 |
+
pass
|
PuLID_ComfyUI/eva_clip/loss.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
try:
|
7 |
+
import torch.distributed.nn
|
8 |
+
from torch import distributed as dist
|
9 |
+
has_distributed = True
|
10 |
+
except ImportError:
|
11 |
+
has_distributed = False
|
12 |
+
|
13 |
+
try:
|
14 |
+
import horovod.torch as hvd
|
15 |
+
except ImportError:
|
16 |
+
hvd = None
|
17 |
+
|
18 |
+
from timm.loss import LabelSmoothingCrossEntropy
|
19 |
+
|
20 |
+
|
21 |
+
def gather_features(
|
22 |
+
image_features,
|
23 |
+
text_features,
|
24 |
+
local_loss=False,
|
25 |
+
gather_with_grad=False,
|
26 |
+
rank=0,
|
27 |
+
world_size=1,
|
28 |
+
use_horovod=False
|
29 |
+
):
|
30 |
+
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
|
31 |
+
if use_horovod:
|
32 |
+
assert hvd is not None, 'Please install horovod'
|
33 |
+
if gather_with_grad:
|
34 |
+
all_image_features = hvd.allgather(image_features)
|
35 |
+
all_text_features = hvd.allgather(text_features)
|
36 |
+
else:
|
37 |
+
with torch.no_grad():
|
38 |
+
all_image_features = hvd.allgather(image_features)
|
39 |
+
all_text_features = hvd.allgather(text_features)
|
40 |
+
if not local_loss:
|
41 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
42 |
+
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
|
43 |
+
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
44 |
+
gathered_image_features[rank] = image_features
|
45 |
+
gathered_text_features[rank] = text_features
|
46 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
47 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
48 |
+
else:
|
49 |
+
# We gather tensors from all gpus
|
50 |
+
if gather_with_grad:
|
51 |
+
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
|
52 |
+
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
53 |
+
# all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0)
|
54 |
+
# all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0)
|
55 |
+
else:
|
56 |
+
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
|
57 |
+
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
58 |
+
dist.all_gather(gathered_image_features, image_features)
|
59 |
+
dist.all_gather(gathered_text_features, text_features)
|
60 |
+
if not local_loss:
|
61 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
62 |
+
gathered_image_features[rank] = image_features
|
63 |
+
gathered_text_features[rank] = text_features
|
64 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
65 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
66 |
+
|
67 |
+
return all_image_features, all_text_features
|
68 |
+
|
69 |
+
|
70 |
+
class ClipLoss(nn.Module):
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
local_loss=False,
|
75 |
+
gather_with_grad=False,
|
76 |
+
cache_labels=False,
|
77 |
+
rank=0,
|
78 |
+
world_size=1,
|
79 |
+
use_horovod=False,
|
80 |
+
smoothing=0.,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
self.local_loss = local_loss
|
84 |
+
self.gather_with_grad = gather_with_grad
|
85 |
+
self.cache_labels = cache_labels
|
86 |
+
self.rank = rank
|
87 |
+
self.world_size = world_size
|
88 |
+
self.use_horovod = use_horovod
|
89 |
+
self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None
|
90 |
+
|
91 |
+
# cache state
|
92 |
+
self.prev_num_logits = 0
|
93 |
+
self.labels = {}
|
94 |
+
|
95 |
+
def forward(self, image_features, text_features, logit_scale=1.):
|
96 |
+
device = image_features.device
|
97 |
+
if self.world_size > 1:
|
98 |
+
all_image_features, all_text_features = gather_features(
|
99 |
+
image_features, text_features,
|
100 |
+
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
|
101 |
+
|
102 |
+
if self.local_loss:
|
103 |
+
logits_per_image = logit_scale * image_features @ all_text_features.T
|
104 |
+
logits_per_text = logit_scale * text_features @ all_image_features.T
|
105 |
+
else:
|
106 |
+
logits_per_image = logit_scale * all_image_features @ all_text_features.T
|
107 |
+
logits_per_text = logits_per_image.T
|
108 |
+
else:
|
109 |
+
logits_per_image = logit_scale * image_features @ text_features.T
|
110 |
+
logits_per_text = logit_scale * text_features @ image_features.T
|
111 |
+
# calculated ground-truth and cache if enabled
|
112 |
+
num_logits = logits_per_image.shape[0]
|
113 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
114 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
115 |
+
if self.world_size > 1 and self.local_loss:
|
116 |
+
labels = labels + num_logits * self.rank
|
117 |
+
if self.cache_labels:
|
118 |
+
self.labels[device] = labels
|
119 |
+
self.prev_num_logits = num_logits
|
120 |
+
else:
|
121 |
+
labels = self.labels[device]
|
122 |
+
|
123 |
+
if self.label_smoothing_cross_entropy:
|
124 |
+
total_loss = (
|
125 |
+
self.label_smoothing_cross_entropy(logits_per_image, labels) +
|
126 |
+
self.label_smoothing_cross_entropy(logits_per_text, labels)
|
127 |
+
) / 2
|
128 |
+
else:
|
129 |
+
total_loss = (
|
130 |
+
F.cross_entropy(logits_per_image, labels) +
|
131 |
+
F.cross_entropy(logits_per_text, labels)
|
132 |
+
) / 2
|
133 |
+
|
134 |
+
acc = None
|
135 |
+
i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image)
|
136 |
+
t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text)
|
137 |
+
acc = {"i2t": i2t_acc, "t2i": t2i_acc}
|
138 |
+
return total_loss, acc
|
PuLID_ComfyUI/eva_clip/model.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP Model
|
2 |
+
|
3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
try:
|
16 |
+
from .hf_model import HFTextEncoder
|
17 |
+
except:
|
18 |
+
HFTextEncoder = None
|
19 |
+
from .modified_resnet import ModifiedResNet
|
20 |
+
from .timm_model import TimmModel
|
21 |
+
from .eva_vit_model import EVAVisionTransformer
|
22 |
+
from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
|
23 |
+
|
24 |
+
try:
|
25 |
+
from apex.normalization import FusedLayerNorm
|
26 |
+
except:
|
27 |
+
FusedLayerNorm = LayerNorm
|
28 |
+
print("Nvidia APEX normalization not installed, using PyTorch LayerNorm")
|
29 |
+
|
30 |
+
try:
|
31 |
+
import xformers.ops as xops
|
32 |
+
except ImportError:
|
33 |
+
xops = None
|
34 |
+
#print("Please 'pip install xformers'")
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class CLIPVisionCfg:
|
38 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
39 |
+
width: int = 768
|
40 |
+
head_width: int = 64
|
41 |
+
mlp_ratio: float = 4.0
|
42 |
+
patch_size: int = 16
|
43 |
+
image_size: Union[Tuple[int, int], int] = 224
|
44 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
45 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
46 |
+
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
47 |
+
drop_path_rate: Optional[float] = None # drop path rate
|
48 |
+
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
49 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
50 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
51 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
52 |
+
timm_proj_bias: bool = False # enable bias final projection
|
53 |
+
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
|
54 |
+
qkv_bias: bool = True
|
55 |
+
fusedLN: bool = False
|
56 |
+
xattn: bool = False
|
57 |
+
postnorm: bool = False
|
58 |
+
rope: bool = False
|
59 |
+
pt_hw_seq_len: int = 16 # 224/14
|
60 |
+
intp_freq: bool = False
|
61 |
+
naiveswiglu: bool = False
|
62 |
+
subln: bool = False
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class CLIPTextCfg:
|
67 |
+
context_length: int = 77
|
68 |
+
vocab_size: int = 49408
|
69 |
+
width: int = 512
|
70 |
+
heads: int = 8
|
71 |
+
layers: int = 12
|
72 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
73 |
+
hf_model_name: str = None
|
74 |
+
hf_tokenizer_name: str = None
|
75 |
+
hf_model_pretrained: bool = True
|
76 |
+
proj: str = 'mlp'
|
77 |
+
pooler_type: str = 'mean_pooler'
|
78 |
+
masked_language_modeling: bool = False
|
79 |
+
fusedLN: bool = False
|
80 |
+
xattn: bool = False
|
81 |
+
attn_mask: bool = True
|
82 |
+
|
83 |
+
def get_cast_dtype(precision: str):
|
84 |
+
cast_dtype = None
|
85 |
+
if precision == 'bf16':
|
86 |
+
cast_dtype = torch.bfloat16
|
87 |
+
elif precision == 'fp16':
|
88 |
+
cast_dtype = torch.float16
|
89 |
+
return cast_dtype
|
90 |
+
|
91 |
+
|
92 |
+
def _build_vision_tower(
|
93 |
+
embed_dim: int,
|
94 |
+
vision_cfg: CLIPVisionCfg,
|
95 |
+
quick_gelu: bool = False,
|
96 |
+
cast_dtype: Optional[torch.dtype] = None
|
97 |
+
):
|
98 |
+
if isinstance(vision_cfg, dict):
|
99 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
100 |
+
|
101 |
+
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
102 |
+
# memory efficient in recent PyTorch releases (>= 1.10).
|
103 |
+
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
104 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
105 |
+
|
106 |
+
if vision_cfg.eva_model_name:
|
107 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
108 |
+
norm_layer = LayerNorm
|
109 |
+
|
110 |
+
visual = EVAVisionTransformer(
|
111 |
+
img_size=vision_cfg.image_size,
|
112 |
+
patch_size=vision_cfg.patch_size,
|
113 |
+
num_classes=embed_dim,
|
114 |
+
use_mean_pooling=vision_cfg.global_average_pool, #False
|
115 |
+
init_values=vision_cfg.ls_init_value,
|
116 |
+
patch_dropout=vision_cfg.patch_dropout,
|
117 |
+
embed_dim=vision_cfg.width,
|
118 |
+
depth=vision_cfg.layers,
|
119 |
+
num_heads=vision_heads,
|
120 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
121 |
+
qkv_bias=vision_cfg.qkv_bias,
|
122 |
+
drop_path_rate=vision_cfg.drop_path_rate,
|
123 |
+
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
|
124 |
+
xattn=vision_cfg.xattn,
|
125 |
+
rope=vision_cfg.rope,
|
126 |
+
postnorm=vision_cfg.postnorm,
|
127 |
+
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
|
128 |
+
intp_freq= vision_cfg.intp_freq,
|
129 |
+
naiveswiglu= vision_cfg.naiveswiglu,
|
130 |
+
subln= vision_cfg.subln
|
131 |
+
)
|
132 |
+
elif vision_cfg.timm_model_name:
|
133 |
+
visual = TimmModel(
|
134 |
+
vision_cfg.timm_model_name,
|
135 |
+
pretrained=vision_cfg.timm_model_pretrained,
|
136 |
+
pool=vision_cfg.timm_pool,
|
137 |
+
proj=vision_cfg.timm_proj,
|
138 |
+
proj_bias=vision_cfg.timm_proj_bias,
|
139 |
+
embed_dim=embed_dim,
|
140 |
+
image_size=vision_cfg.image_size
|
141 |
+
)
|
142 |
+
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
|
143 |
+
elif isinstance(vision_cfg.layers, (tuple, list)):
|
144 |
+
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
145 |
+
visual = ModifiedResNet(
|
146 |
+
layers=vision_cfg.layers,
|
147 |
+
output_dim=embed_dim,
|
148 |
+
heads=vision_heads,
|
149 |
+
image_size=vision_cfg.image_size,
|
150 |
+
width=vision_cfg.width
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
154 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
155 |
+
visual = VisionTransformer(
|
156 |
+
image_size=vision_cfg.image_size,
|
157 |
+
patch_size=vision_cfg.patch_size,
|
158 |
+
width=vision_cfg.width,
|
159 |
+
layers=vision_cfg.layers,
|
160 |
+
heads=vision_heads,
|
161 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
162 |
+
ls_init_value=vision_cfg.ls_init_value,
|
163 |
+
patch_dropout=vision_cfg.patch_dropout,
|
164 |
+
global_average_pool=vision_cfg.global_average_pool,
|
165 |
+
output_dim=embed_dim,
|
166 |
+
act_layer=act_layer,
|
167 |
+
norm_layer=norm_layer,
|
168 |
+
)
|
169 |
+
|
170 |
+
return visual
|
171 |
+
|
172 |
+
|
173 |
+
def _build_text_tower(
|
174 |
+
embed_dim: int,
|
175 |
+
text_cfg: CLIPTextCfg,
|
176 |
+
quick_gelu: bool = False,
|
177 |
+
cast_dtype: Optional[torch.dtype] = None,
|
178 |
+
):
|
179 |
+
if isinstance(text_cfg, dict):
|
180 |
+
text_cfg = CLIPTextCfg(**text_cfg)
|
181 |
+
|
182 |
+
if text_cfg.hf_model_name:
|
183 |
+
text = HFTextEncoder(
|
184 |
+
text_cfg.hf_model_name,
|
185 |
+
output_dim=embed_dim,
|
186 |
+
tokenizer_name=text_cfg.hf_tokenizer_name,
|
187 |
+
proj=text_cfg.proj,
|
188 |
+
pooler_type=text_cfg.pooler_type,
|
189 |
+
masked_language_modeling=text_cfg.masked_language_modeling
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
193 |
+
norm_layer = LayerNorm
|
194 |
+
|
195 |
+
text = TextTransformer(
|
196 |
+
context_length=text_cfg.context_length,
|
197 |
+
vocab_size=text_cfg.vocab_size,
|
198 |
+
width=text_cfg.width,
|
199 |
+
heads=text_cfg.heads,
|
200 |
+
layers=text_cfg.layers,
|
201 |
+
ls_init_value=text_cfg.ls_init_value,
|
202 |
+
output_dim=embed_dim,
|
203 |
+
act_layer=act_layer,
|
204 |
+
norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
|
205 |
+
xattn=text_cfg.xattn,
|
206 |
+
attn_mask=text_cfg.attn_mask,
|
207 |
+
)
|
208 |
+
return text
|
209 |
+
|
210 |
+
class CLIP(nn.Module):
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
embed_dim: int,
|
214 |
+
vision_cfg: CLIPVisionCfg,
|
215 |
+
text_cfg: CLIPTextCfg,
|
216 |
+
quick_gelu: bool = False,
|
217 |
+
cast_dtype: Optional[torch.dtype] = None,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
221 |
+
|
222 |
+
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
223 |
+
self.transformer = text.transformer
|
224 |
+
self.vocab_size = text.vocab_size
|
225 |
+
self.token_embedding = text.token_embedding
|
226 |
+
self.positional_embedding = text.positional_embedding
|
227 |
+
self.ln_final = text.ln_final
|
228 |
+
self.text_projection = text.text_projection
|
229 |
+
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
|
230 |
+
|
231 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
232 |
+
|
233 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
234 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
235 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
236 |
+
|
237 |
+
@torch.jit.ignore
|
238 |
+
def set_grad_checkpointing(self, enable=True):
|
239 |
+
self.visual.set_grad_checkpointing(enable)
|
240 |
+
self.transformer.grad_checkpointing = enable
|
241 |
+
|
242 |
+
@torch.jit.ignore
|
243 |
+
def no_weight_decay(self):
|
244 |
+
return {'logit_scale'}
|
245 |
+
|
246 |
+
def encode_image(self, image, normalize: bool = False):
|
247 |
+
features = self.visual(image)
|
248 |
+
return F.normalize(features, dim=-1) if normalize else features
|
249 |
+
|
250 |
+
def encode_text(self, text, normalize: bool = False):
|
251 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
252 |
+
|
253 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
254 |
+
|
255 |
+
x = x + self.positional_embedding.to(cast_dtype)
|
256 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
257 |
+
x = self.transformer(x, attn_mask=self.attn_mask)
|
258 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
259 |
+
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
260 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
261 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
262 |
+
return F.normalize(x, dim=-1) if normalize else x
|
263 |
+
|
264 |
+
def forward(self, image, text):
|
265 |
+
image_features = self.encode_image(image, normalize=True)
|
266 |
+
text_features = self.encode_text(text, normalize=True)
|
267 |
+
return image_features, text_features, self.logit_scale.exp()
|
268 |
+
|
269 |
+
|
270 |
+
class CustomCLIP(nn.Module):
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
embed_dim: int,
|
274 |
+
vision_cfg: CLIPVisionCfg,
|
275 |
+
text_cfg: CLIPTextCfg,
|
276 |
+
quick_gelu: bool = False,
|
277 |
+
cast_dtype: Optional[torch.dtype] = None,
|
278 |
+
itm_task: bool = False,
|
279 |
+
):
|
280 |
+
super().__init__()
|
281 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
282 |
+
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
283 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
284 |
+
|
285 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
286 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
287 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
288 |
+
|
289 |
+
def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
290 |
+
self.text.lock(unlocked_layers, freeze_layer_norm)
|
291 |
+
|
292 |
+
@torch.jit.ignore
|
293 |
+
def set_grad_checkpointing(self, enable=True):
|
294 |
+
self.visual.set_grad_checkpointing(enable)
|
295 |
+
self.text.set_grad_checkpointing(enable)
|
296 |
+
|
297 |
+
@torch.jit.ignore
|
298 |
+
def no_weight_decay(self):
|
299 |
+
return {'logit_scale'}
|
300 |
+
|
301 |
+
def encode_image(self, image, normalize: bool = False):
|
302 |
+
features = self.visual(image)
|
303 |
+
return F.normalize(features, dim=-1) if normalize else features
|
304 |
+
|
305 |
+
def encode_text(self, text, normalize: bool = False):
|
306 |
+
features = self.text(text)
|
307 |
+
return F.normalize(features, dim=-1) if normalize else features
|
308 |
+
|
309 |
+
def forward(self, image, text):
|
310 |
+
image_features = self.encode_image(image, normalize=True)
|
311 |
+
text_features = self.encode_text(text, normalize=True)
|
312 |
+
return image_features, text_features, self.logit_scale.exp()
|
313 |
+
|
314 |
+
|
315 |
+
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
316 |
+
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
317 |
+
|
318 |
+
def _convert_weights(l):
|
319 |
+
|
320 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
321 |
+
l.weight.data = l.weight.data.to(dtype)
|
322 |
+
if l.bias is not None:
|
323 |
+
l.bias.data = l.bias.data.to(dtype)
|
324 |
+
|
325 |
+
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
326 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
327 |
+
tensor = getattr(l, attr, None)
|
328 |
+
if tensor is not None:
|
329 |
+
tensor.data = tensor.data.to(dtype)
|
330 |
+
|
331 |
+
if isinstance(l, nn.Parameter):
|
332 |
+
l.data = l.data.to(dtype)
|
333 |
+
|
334 |
+
for name in ["text_projection", "proj"]:
|
335 |
+
if hasattr(l, name) and isinstance(l, nn.Parameter):
|
336 |
+
attr = getattr(l, name, None)
|
337 |
+
if attr is not None:
|
338 |
+
attr.data = attr.data.to(dtype)
|
339 |
+
|
340 |
+
model.apply(_convert_weights)
|
341 |
+
|
342 |
+
|
343 |
+
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
344 |
+
|
345 |
+
|
346 |
+
# used to maintain checkpoint compatibility
|
347 |
+
def convert_to_custom_text_state_dict(state_dict: dict):
|
348 |
+
if 'text_projection' in state_dict:
|
349 |
+
# old format state_dict, move text tower -> .text
|
350 |
+
new_state_dict = {}
|
351 |
+
for k, v in state_dict.items():
|
352 |
+
if any(k.startswith(p) for p in (
|
353 |
+
'text_projection',
|
354 |
+
'positional_embedding',
|
355 |
+
'token_embedding',
|
356 |
+
'transformer',
|
357 |
+
'ln_final',
|
358 |
+
'logit_scale'
|
359 |
+
)):
|
360 |
+
k = 'text.' + k
|
361 |
+
new_state_dict[k] = v
|
362 |
+
return new_state_dict
|
363 |
+
return state_dict
|
364 |
+
|
365 |
+
|
366 |
+
def build_model_from_openai_state_dict(
|
367 |
+
state_dict: dict,
|
368 |
+
quick_gelu=True,
|
369 |
+
cast_dtype=torch.float16,
|
370 |
+
):
|
371 |
+
vit = "visual.proj" in state_dict
|
372 |
+
|
373 |
+
if vit:
|
374 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
375 |
+
vision_layers = len(
|
376 |
+
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
377 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
378 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
379 |
+
image_size = vision_patch_size * grid_size
|
380 |
+
else:
|
381 |
+
counts: list = [
|
382 |
+
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
383 |
+
vision_layers = tuple(counts)
|
384 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
385 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
386 |
+
vision_patch_size = None
|
387 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
388 |
+
image_size = output_width * 32
|
389 |
+
|
390 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
391 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
392 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
393 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
394 |
+
transformer_heads = transformer_width // 64
|
395 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
396 |
+
|
397 |
+
vision_cfg = CLIPVisionCfg(
|
398 |
+
layers=vision_layers,
|
399 |
+
width=vision_width,
|
400 |
+
patch_size=vision_patch_size,
|
401 |
+
image_size=image_size,
|
402 |
+
)
|
403 |
+
text_cfg = CLIPTextCfg(
|
404 |
+
context_length=context_length,
|
405 |
+
vocab_size=vocab_size,
|
406 |
+
width=transformer_width,
|
407 |
+
heads=transformer_heads,
|
408 |
+
layers=transformer_layers
|
409 |
+
)
|
410 |
+
model = CLIP(
|
411 |
+
embed_dim,
|
412 |
+
vision_cfg=vision_cfg,
|
413 |
+
text_cfg=text_cfg,
|
414 |
+
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
415 |
+
cast_dtype=cast_dtype,
|
416 |
+
)
|
417 |
+
|
418 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
419 |
+
state_dict.pop(key, None)
|
420 |
+
|
421 |
+
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
422 |
+
model.load_state_dict(state_dict)
|
423 |
+
return model.eval()
|
424 |
+
|
425 |
+
|
426 |
+
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
427 |
+
model.eval()
|
428 |
+
image_size = model.visual.image_size
|
429 |
+
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
430 |
+
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
431 |
+
model = torch.jit.trace_module(
|
432 |
+
model,
|
433 |
+
inputs=dict(
|
434 |
+
forward=(example_images, example_text),
|
435 |
+
encode_text=(example_text,),
|
436 |
+
encode_image=(example_images,)
|
437 |
+
))
|
438 |
+
model.visual.image_size = image_size
|
439 |
+
return model
|
PuLID_ComfyUI/eva_clip/model_configs/EVA01-CLIP-B-16.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 512,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 12,
|
6 |
+
"width": 768,
|
7 |
+
"patch_size": 16,
|
8 |
+
"eva_model_name": "eva-clip-b-16",
|
9 |
+
"ls_init_value": 0.1,
|
10 |
+
"drop_path_rate": 0.0
|
11 |
+
},
|
12 |
+
"text_cfg": {
|
13 |
+
"context_length": 77,
|
14 |
+
"vocab_size": 49408,
|
15 |
+
"width": 512,
|
16 |
+
"heads": 8,
|
17 |
+
"layers": 12
|
18 |
+
}
|
19 |
+
}
|
PuLID_ComfyUI/eva_clip/model_configs/EVA01-CLIP-g-14-plus.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 40,
|
6 |
+
"width": 1408,
|
7 |
+
"head_width": 88,
|
8 |
+
"mlp_ratio": 4.3637,
|
9 |
+
"patch_size": 14,
|
10 |
+
"eva_model_name": "eva-clip-g-14-x",
|
11 |
+
"drop_path_rate": 0,
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true
|
14 |
+
},
|
15 |
+
"text_cfg": {
|
16 |
+
"context_length": 77,
|
17 |
+
"vocab_size": 49408,
|
18 |
+
"width": 1024,
|
19 |
+
"heads": 16,
|
20 |
+
"layers": 24,
|
21 |
+
"xattn": false,
|
22 |
+
"fusedLN": true
|
23 |
+
}
|
24 |
+
}
|
PuLID_ComfyUI/eva_clip/model_configs/EVA01-CLIP-g-14.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 40,
|
6 |
+
"width": 1408,
|
7 |
+
"head_width": 88,
|
8 |
+
"mlp_ratio": 4.3637,
|
9 |
+
"patch_size": 14,
|
10 |
+
"eva_model_name": "eva-clip-g-14-x",
|
11 |
+
"drop_path_rate": 0.4,
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true
|
14 |
+
},
|
15 |
+
"text_cfg": {
|
16 |
+
"context_length": 77,
|
17 |
+
"vocab_size": 49408,
|
18 |
+
"width": 768,
|
19 |
+
"heads": 12,
|
20 |
+
"layers": 12,
|
21 |
+
"xattn": false,
|
22 |
+
"fusedLN": true
|
23 |
+
}
|
24 |
+
}
|
PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-B-16.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 512,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 12,
|
6 |
+
"width": 768,
|
7 |
+
"head_width": 64,
|
8 |
+
"patch_size": 16,
|
9 |
+
"mlp_ratio": 2.6667,
|
10 |
+
"eva_model_name": "eva-clip-b-16-X",
|
11 |
+
"drop_path_rate": 0.0,
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true,
|
14 |
+
"rope": true,
|
15 |
+
"pt_hw_seq_len": 16,
|
16 |
+
"intp_freq": true,
|
17 |
+
"naiveswiglu": true,
|
18 |
+
"subln": true
|
19 |
+
},
|
20 |
+
"text_cfg": {
|
21 |
+
"context_length": 77,
|
22 |
+
"vocab_size": 49408,
|
23 |
+
"width": 512,
|
24 |
+
"heads": 8,
|
25 |
+
"layers": 12,
|
26 |
+
"xattn": true,
|
27 |
+
"fusedLN": true
|
28 |
+
}
|
29 |
+
}
|
PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-L-14-336.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 336,
|
5 |
+
"layers": 24,
|
6 |
+
"width": 1024,
|
7 |
+
"drop_path_rate": 0,
|
8 |
+
"head_width": 64,
|
9 |
+
"mlp_ratio": 2.6667,
|
10 |
+
"patch_size": 14,
|
11 |
+
"eva_model_name": "eva-clip-l-14-336",
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true,
|
14 |
+
"rope": true,
|
15 |
+
"pt_hw_seq_len": 16,
|
16 |
+
"intp_freq": true,
|
17 |
+
"naiveswiglu": true,
|
18 |
+
"subln": true
|
19 |
+
},
|
20 |
+
"text_cfg": {
|
21 |
+
"context_length": 77,
|
22 |
+
"vocab_size": 49408,
|
23 |
+
"width": 768,
|
24 |
+
"heads": 12,
|
25 |
+
"layers": 12,
|
26 |
+
"xattn": false,
|
27 |
+
"fusedLN": true
|
28 |
+
}
|
29 |
+
}
|
PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-L-14.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 24,
|
6 |
+
"width": 1024,
|
7 |
+
"drop_path_rate": 0,
|
8 |
+
"head_width": 64,
|
9 |
+
"mlp_ratio": 2.6667,
|
10 |
+
"patch_size": 14,
|
11 |
+
"eva_model_name": "eva-clip-l-14",
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true,
|
14 |
+
"rope": true,
|
15 |
+
"pt_hw_seq_len": 16,
|
16 |
+
"intp_freq": true,
|
17 |
+
"naiveswiglu": true,
|
18 |
+
"subln": true
|
19 |
+
},
|
20 |
+
"text_cfg": {
|
21 |
+
"context_length": 77,
|
22 |
+
"vocab_size": 49408,
|
23 |
+
"width": 768,
|
24 |
+
"heads": 12,
|
25 |
+
"layers": 12,
|
26 |
+
"xattn": false,
|
27 |
+
"fusedLN": true
|
28 |
+
}
|
29 |
+
}
|
PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 64,
|
6 |
+
"width": 1792,
|
7 |
+
"head_width": 112,
|
8 |
+
"mlp_ratio": 8.571428571428571,
|
9 |
+
"patch_size": 14,
|
10 |
+
"eva_model_name": "eva-clip-4b-14-x",
|
11 |
+
"drop_path_rate": 0,
|
12 |
+
"xattn": true,
|
13 |
+
"postnorm": true,
|
14 |
+
"fusedLN": true
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 1280,
|
20 |
+
"heads": 20,
|
21 |
+
"layers": 32,
|
22 |
+
"xattn": false,
|
23 |
+
"fusedLN": true
|
24 |
+
}
|
25 |
+
}
|
PuLID_ComfyUI/eva_clip/model_configs/EVA02-CLIP-bigE-14.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 64,
|
6 |
+
"width": 1792,
|
7 |
+
"head_width": 112,
|
8 |
+
"mlp_ratio": 8.571428571428571,
|
9 |
+
"patch_size": 14,
|
10 |
+
"eva_model_name": "eva-clip-4b-14-x",
|
11 |
+
"drop_path_rate": 0,
|
12 |
+
"xattn": true,
|
13 |
+
"postnorm": true,
|
14 |
+
"fusedLN": true
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 1024,
|
20 |
+
"heads": 16,
|
21 |
+
"layers": 24,
|
22 |
+
"xattn": false,
|
23 |
+
"fusedLN": true
|
24 |
+
}
|
25 |
+
}
|
PuLID_ComfyUI/eva_clip/modified_resnet.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from .utils import freeze_batch_norm_2d
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.act1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.act2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.act3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.act1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.act2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.act3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x, key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0.,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
|
92 |
+
return x[0]
|
93 |
+
|
94 |
+
|
95 |
+
class ModifiedResNet(nn.Module):
|
96 |
+
"""
|
97 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
98 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
99 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
100 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
104 |
+
super().__init__()
|
105 |
+
self.output_dim = output_dim
|
106 |
+
self.image_size = image_size
|
107 |
+
|
108 |
+
# the 3-layer stem
|
109 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
110 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
111 |
+
self.act1 = nn.ReLU(inplace=True)
|
112 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
113 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
114 |
+
self.act2 = nn.ReLU(inplace=True)
|
115 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
116 |
+
self.bn3 = nn.BatchNorm2d(width)
|
117 |
+
self.act3 = nn.ReLU(inplace=True)
|
118 |
+
self.avgpool = nn.AvgPool2d(2)
|
119 |
+
|
120 |
+
# residual layers
|
121 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
122 |
+
self.layer1 = self._make_layer(width, layers[0])
|
123 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
124 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
125 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
126 |
+
|
127 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
128 |
+
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
129 |
+
|
130 |
+
self.init_parameters()
|
131 |
+
|
132 |
+
def _make_layer(self, planes, blocks, stride=1):
|
133 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
134 |
+
|
135 |
+
self._inplanes = planes * Bottleneck.expansion
|
136 |
+
for _ in range(1, blocks):
|
137 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
138 |
+
|
139 |
+
return nn.Sequential(*layers)
|
140 |
+
|
141 |
+
def init_parameters(self):
|
142 |
+
if self.attnpool is not None:
|
143 |
+
std = self.attnpool.c_proj.in_features ** -0.5
|
144 |
+
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
145 |
+
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
146 |
+
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
147 |
+
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
148 |
+
|
149 |
+
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
150 |
+
for name, param in resnet_block.named_parameters():
|
151 |
+
if name.endswith("bn3.weight"):
|
152 |
+
nn.init.zeros_(param)
|
153 |
+
|
154 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
155 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
156 |
+
for param in self.parameters():
|
157 |
+
param.requires_grad = False
|
158 |
+
if freeze_bn_stats:
|
159 |
+
freeze_batch_norm_2d(self)
|
160 |
+
|
161 |
+
@torch.jit.ignore
|
162 |
+
def set_grad_checkpointing(self, enable=True):
|
163 |
+
# FIXME support for non-transformer
|
164 |
+
pass
|
165 |
+
|
166 |
+
def stem(self, x):
|
167 |
+
x = self.act1(self.bn1(self.conv1(x)))
|
168 |
+
x = self.act2(self.bn2(self.conv2(x)))
|
169 |
+
x = self.act3(self.bn3(self.conv3(x)))
|
170 |
+
x = self.avgpool(x)
|
171 |
+
return x
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
x = self.stem(x)
|
175 |
+
x = self.layer1(x)
|
176 |
+
x = self.layer2(x)
|
177 |
+
x = self.layer3(x)
|
178 |
+
x = self.layer4(x)
|
179 |
+
x = self.attnpool(x)
|
180 |
+
|
181 |
+
return x
|
PuLID_ComfyUI/eva_clip/openai.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" OpenAI pretrained model functions
|
2 |
+
|
3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
|
13 |
+
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
|
14 |
+
|
15 |
+
__all__ = ["list_openai_models", "load_openai_model"]
|
16 |
+
|
17 |
+
|
18 |
+
def list_openai_models() -> List[str]:
|
19 |
+
"""Returns the names of available CLIP models"""
|
20 |
+
return list_pretrained_models_by_tag('openai')
|
21 |
+
|
22 |
+
|
23 |
+
def load_openai_model(
|
24 |
+
name: str,
|
25 |
+
precision: Optional[str] = None,
|
26 |
+
device: Optional[Union[str, torch.device]] = None,
|
27 |
+
jit: bool = True,
|
28 |
+
cache_dir: Optional[str] = None,
|
29 |
+
):
|
30 |
+
"""Load a CLIP model
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
----------
|
34 |
+
name : str
|
35 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
36 |
+
precision: str
|
37 |
+
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
|
38 |
+
device : Union[str, torch.device]
|
39 |
+
The device to put the loaded model
|
40 |
+
jit : bool
|
41 |
+
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
42 |
+
cache_dir : Optional[str]
|
43 |
+
The directory to cache the downloaded model weights
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
model : torch.nn.Module
|
48 |
+
The CLIP model
|
49 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
50 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
51 |
+
"""
|
52 |
+
if device is None:
|
53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
if precision is None:
|
55 |
+
precision = 'fp32' if device == 'cpu' else 'fp16'
|
56 |
+
|
57 |
+
if get_pretrained_url(name, 'openai'):
|
58 |
+
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
|
59 |
+
elif os.path.isfile(name):
|
60 |
+
model_path = name
|
61 |
+
else:
|
62 |
+
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
|
63 |
+
|
64 |
+
try:
|
65 |
+
# loading JIT archive
|
66 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
67 |
+
state_dict = None
|
68 |
+
except RuntimeError:
|
69 |
+
# loading saved state dict
|
70 |
+
if jit:
|
71 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
72 |
+
jit = False
|
73 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
74 |
+
|
75 |
+
if not jit:
|
76 |
+
# Build a non-jit model from the OpenAI jitted model state dict
|
77 |
+
cast_dtype = get_cast_dtype(precision)
|
78 |
+
try:
|
79 |
+
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
|
80 |
+
except KeyError:
|
81 |
+
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
82 |
+
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
|
83 |
+
|
84 |
+
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
|
85 |
+
model = model.to(device)
|
86 |
+
if precision.startswith('amp') or precision == 'fp32':
|
87 |
+
model.float()
|
88 |
+
elif precision == 'bf16':
|
89 |
+
convert_weights_to_lp(model, dtype=torch.bfloat16)
|
90 |
+
|
91 |
+
return model
|
92 |
+
|
93 |
+
# patch the device names
|
94 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
95 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
96 |
+
|
97 |
+
def patch_device(module):
|
98 |
+
try:
|
99 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
100 |
+
except RuntimeError:
|
101 |
+
graphs = []
|
102 |
+
|
103 |
+
if hasattr(module, "forward1"):
|
104 |
+
graphs.append(module.forward1.graph)
|
105 |
+
|
106 |
+
for graph in graphs:
|
107 |
+
for node in graph.findAllNodes("prim::Constant"):
|
108 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
109 |
+
node.copyAttributes(device_node)
|
110 |
+
|
111 |
+
model.apply(patch_device)
|
112 |
+
patch_device(model.encode_image)
|
113 |
+
patch_device(model.encode_text)
|
114 |
+
|
115 |
+
# patch dtype to float32 (typically for CPU)
|
116 |
+
if precision == 'fp32':
|
117 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
118 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
119 |
+
float_node = float_input.node()
|
120 |
+
|
121 |
+
def patch_float(module):
|
122 |
+
try:
|
123 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
124 |
+
except RuntimeError:
|
125 |
+
graphs = []
|
126 |
+
|
127 |
+
if hasattr(module, "forward1"):
|
128 |
+
graphs.append(module.forward1.graph)
|
129 |
+
|
130 |
+
for graph in graphs:
|
131 |
+
for node in graph.findAllNodes("aten::to"):
|
132 |
+
inputs = list(node.inputs())
|
133 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
134 |
+
if inputs[i].node()["value"] == 5:
|
135 |
+
inputs[i].node().copyAttributes(float_node)
|
136 |
+
|
137 |
+
model.apply(patch_float)
|
138 |
+
patch_float(model.encode_image)
|
139 |
+
patch_float(model.encode_text)
|
140 |
+
model.float()
|
141 |
+
|
142 |
+
# ensure image_size attr available at consistent location for both jit and non-jit
|
143 |
+
model.visual.image_size = model.input_resolution.item()
|
144 |
+
return model
|
PuLID_ComfyUI/eva_clip/pretrained.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from functools import partial
|
6 |
+
from typing import Dict, Union
|
7 |
+
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
try:
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
_has_hf_hub = True
|
13 |
+
except ImportError:
|
14 |
+
hf_hub_download = None
|
15 |
+
_has_hf_hub = False
|
16 |
+
|
17 |
+
|
18 |
+
def _pcfg(url='', hf_hub='', filename='', mean=None, std=None):
|
19 |
+
return dict(
|
20 |
+
url=url,
|
21 |
+
hf_hub=hf_hub,
|
22 |
+
mean=mean,
|
23 |
+
std=std,
|
24 |
+
)
|
25 |
+
|
26 |
+
_VITB32 = dict(
|
27 |
+
openai=_pcfg(
|
28 |
+
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
29 |
+
laion400m_e31=_pcfg(
|
30 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
31 |
+
laion400m_e32=_pcfg(
|
32 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
33 |
+
laion2b_e16=_pcfg(
|
34 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
|
35 |
+
laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
|
36 |
+
)
|
37 |
+
|
38 |
+
_VITB32_quickgelu = dict(
|
39 |
+
openai=_pcfg(
|
40 |
+
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
41 |
+
laion400m_e31=_pcfg(
|
42 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
43 |
+
laion400m_e32=_pcfg(
|
44 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
45 |
+
)
|
46 |
+
|
47 |
+
_VITB16 = dict(
|
48 |
+
openai=_pcfg(
|
49 |
+
"https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
|
50 |
+
laion400m_e31=_pcfg(
|
51 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
|
52 |
+
laion400m_e32=_pcfg(
|
53 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
|
54 |
+
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
|
55 |
+
)
|
56 |
+
|
57 |
+
_EVAB16 = dict(
|
58 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
59 |
+
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
60 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
61 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
62 |
+
)
|
63 |
+
|
64 |
+
_VITB16_PLUS_240 = dict(
|
65 |
+
laion400m_e31=_pcfg(
|
66 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
|
67 |
+
laion400m_e32=_pcfg(
|
68 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
|
69 |
+
)
|
70 |
+
|
71 |
+
_VITL14 = dict(
|
72 |
+
openai=_pcfg(
|
73 |
+
"https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
|
74 |
+
laion400m_e31=_pcfg(
|
75 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
|
76 |
+
laion400m_e32=_pcfg(
|
77 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
|
78 |
+
laion2b_s32b_b82k=_pcfg(
|
79 |
+
hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
|
80 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
81 |
+
)
|
82 |
+
|
83 |
+
_EVAL14 = dict(
|
84 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
85 |
+
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
86 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
87 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
88 |
+
)
|
89 |
+
|
90 |
+
_VITL14_336 = dict(
|
91 |
+
openai=_pcfg(
|
92 |
+
"https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
|
93 |
+
)
|
94 |
+
|
95 |
+
_EVAL14_336 = dict(
|
96 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
97 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
98 |
+
eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
99 |
+
eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
100 |
+
)
|
101 |
+
|
102 |
+
_VITH14 = dict(
|
103 |
+
laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
|
104 |
+
)
|
105 |
+
|
106 |
+
_VITg14 = dict(
|
107 |
+
laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
|
108 |
+
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
|
109 |
+
)
|
110 |
+
|
111 |
+
_EVAg14 = dict(
|
112 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
113 |
+
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
114 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
115 |
+
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
116 |
+
)
|
117 |
+
|
118 |
+
_EVAg14_PLUS = dict(
|
119 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
120 |
+
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
121 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
122 |
+
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
123 |
+
)
|
124 |
+
|
125 |
+
_VITbigG14 = dict(
|
126 |
+
laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
|
127 |
+
)
|
128 |
+
|
129 |
+
_EVAbigE14 = dict(
|
130 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
131 |
+
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
132 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
133 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
134 |
+
)
|
135 |
+
|
136 |
+
_EVAbigE14_PLUS = dict(
|
137 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
138 |
+
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
139 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
140 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
_PRETRAINED = {
|
145 |
+
# "ViT-B-32": _VITB32,
|
146 |
+
"OpenaiCLIP-B-32": _VITB32,
|
147 |
+
"OpenCLIP-B-32": _VITB32,
|
148 |
+
|
149 |
+
# "ViT-B-32-quickgelu": _VITB32_quickgelu,
|
150 |
+
"OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
151 |
+
"OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
152 |
+
|
153 |
+
# "ViT-B-16": _VITB16,
|
154 |
+
"OpenaiCLIP-B-16": _VITB16,
|
155 |
+
"OpenCLIP-B-16": _VITB16,
|
156 |
+
|
157 |
+
"EVA02-B-16": _EVAB16,
|
158 |
+
"EVA02-CLIP-B-16": _EVAB16,
|
159 |
+
|
160 |
+
# "ViT-B-16-plus-240": _VITB16_PLUS_240,
|
161 |
+
"OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
|
162 |
+
|
163 |
+
# "ViT-L-14": _VITL14,
|
164 |
+
"OpenaiCLIP-L-14": _VITL14,
|
165 |
+
"OpenCLIP-L-14": _VITL14,
|
166 |
+
|
167 |
+
"EVA02-L-14": _EVAL14,
|
168 |
+
"EVA02-CLIP-L-14": _EVAL14,
|
169 |
+
|
170 |
+
# "ViT-L-14-336": _VITL14_336,
|
171 |
+
"OpenaiCLIP-L-14-336": _VITL14_336,
|
172 |
+
|
173 |
+
"EVA02-CLIP-L-14-336": _EVAL14_336,
|
174 |
+
|
175 |
+
# "ViT-H-14": _VITH14,
|
176 |
+
# "ViT-g-14": _VITg14,
|
177 |
+
"OpenCLIP-H-14": _VITH14,
|
178 |
+
"OpenCLIP-g-14": _VITg14,
|
179 |
+
|
180 |
+
"EVA01-CLIP-g-14": _EVAg14,
|
181 |
+
"EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
|
182 |
+
|
183 |
+
# "ViT-bigG-14": _VITbigG14,
|
184 |
+
"OpenCLIP-bigG-14": _VITbigG14,
|
185 |
+
|
186 |
+
"EVA02-CLIP-bigE-14": _EVAbigE14,
|
187 |
+
"EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
|
188 |
+
}
|
189 |
+
|
190 |
+
|
191 |
+
def _clean_tag(tag: str):
|
192 |
+
# normalize pretrained tags
|
193 |
+
return tag.lower().replace('-', '_')
|
194 |
+
|
195 |
+
|
196 |
+
def list_pretrained(as_str: bool = False):
|
197 |
+
""" returns list of pretrained models
|
198 |
+
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
199 |
+
"""
|
200 |
+
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
|
201 |
+
|
202 |
+
|
203 |
+
def list_pretrained_models_by_tag(tag: str):
|
204 |
+
""" return all models having the specified pretrain tag """
|
205 |
+
models = []
|
206 |
+
tag = _clean_tag(tag)
|
207 |
+
for k in _PRETRAINED.keys():
|
208 |
+
if tag in _PRETRAINED[k]:
|
209 |
+
models.append(k)
|
210 |
+
return models
|
211 |
+
|
212 |
+
|
213 |
+
def list_pretrained_tags_by_model(model: str):
|
214 |
+
""" return all pretrain tags for the specified model architecture """
|
215 |
+
tags = []
|
216 |
+
if model in _PRETRAINED:
|
217 |
+
tags.extend(_PRETRAINED[model].keys())
|
218 |
+
return tags
|
219 |
+
|
220 |
+
|
221 |
+
def is_pretrained_cfg(model: str, tag: str):
|
222 |
+
if model not in _PRETRAINED:
|
223 |
+
return False
|
224 |
+
return _clean_tag(tag) in _PRETRAINED[model]
|
225 |
+
|
226 |
+
|
227 |
+
def get_pretrained_cfg(model: str, tag: str):
|
228 |
+
if model not in _PRETRAINED:
|
229 |
+
return {}
|
230 |
+
model_pretrained = _PRETRAINED[model]
|
231 |
+
return model_pretrained.get(_clean_tag(tag), {})
|
232 |
+
|
233 |
+
|
234 |
+
def get_pretrained_url(model: str, tag: str):
|
235 |
+
cfg = get_pretrained_cfg(model, _clean_tag(tag))
|
236 |
+
return cfg.get('url', '')
|
237 |
+
|
238 |
+
|
239 |
+
def download_pretrained_from_url(
|
240 |
+
url: str,
|
241 |
+
cache_dir: Union[str, None] = None,
|
242 |
+
):
|
243 |
+
if not cache_dir:
|
244 |
+
cache_dir = os.path.expanduser("~/.cache/clip")
|
245 |
+
os.makedirs(cache_dir, exist_ok=True)
|
246 |
+
filename = os.path.basename(url)
|
247 |
+
|
248 |
+
if 'openaipublic' in url:
|
249 |
+
expected_sha256 = url.split("/")[-2]
|
250 |
+
elif 'mlfoundations' in url:
|
251 |
+
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
|
252 |
+
else:
|
253 |
+
expected_sha256 = ''
|
254 |
+
|
255 |
+
download_target = os.path.join(cache_dir, filename)
|
256 |
+
|
257 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
258 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
259 |
+
|
260 |
+
if os.path.isfile(download_target):
|
261 |
+
if expected_sha256:
|
262 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
263 |
+
return download_target
|
264 |
+
else:
|
265 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
266 |
+
else:
|
267 |
+
return download_target
|
268 |
+
|
269 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
270 |
+
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
271 |
+
while True:
|
272 |
+
buffer = source.read(8192)
|
273 |
+
if not buffer:
|
274 |
+
break
|
275 |
+
|
276 |
+
output.write(buffer)
|
277 |
+
loop.update(len(buffer))
|
278 |
+
|
279 |
+
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
280 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
281 |
+
|
282 |
+
return download_target
|
283 |
+
|
284 |
+
|
285 |
+
def has_hf_hub(necessary=False):
|
286 |
+
if not _has_hf_hub and necessary:
|
287 |
+
# if no HF Hub module installed, and it is necessary to continue, raise error
|
288 |
+
raise RuntimeError(
|
289 |
+
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
290 |
+
return _has_hf_hub
|
291 |
+
|
292 |
+
|
293 |
+
def download_pretrained_from_hf(
|
294 |
+
model_id: str,
|
295 |
+
filename: str = 'open_clip_pytorch_model.bin',
|
296 |
+
revision=None,
|
297 |
+
cache_dir: Union[str, None] = None,
|
298 |
+
):
|
299 |
+
has_hf_hub(True)
|
300 |
+
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
|
301 |
+
return cached_file
|
302 |
+
|
303 |
+
|
304 |
+
def download_pretrained(
|
305 |
+
cfg: Dict,
|
306 |
+
force_hf_hub: bool = False,
|
307 |
+
cache_dir: Union[str, None] = None,
|
308 |
+
):
|
309 |
+
target = ''
|
310 |
+
if not cfg:
|
311 |
+
return target
|
312 |
+
|
313 |
+
download_url = cfg.get('url', '')
|
314 |
+
download_hf_hub = cfg.get('hf_hub', '')
|
315 |
+
if download_hf_hub and force_hf_hub:
|
316 |
+
# use HF hub even if url exists
|
317 |
+
download_url = ''
|
318 |
+
|
319 |
+
if download_url:
|
320 |
+
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
|
321 |
+
elif download_hf_hub:
|
322 |
+
has_hf_hub(True)
|
323 |
+
# we assume the hf_hub entries in pretrained config combine model_id + filename in
|
324 |
+
# 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
|
325 |
+
# use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
|
326 |
+
model_id, filename = os.path.split(download_hf_hub)
|
327 |
+
if filename:
|
328 |
+
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
|
329 |
+
else:
|
330 |
+
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
331 |
+
|
332 |
+
return target
|
PuLID_ComfyUI/eva_clip/rope.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import pi
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
import logging
|
6 |
+
|
7 |
+
def broadcat(tensors, dim = -1):
|
8 |
+
num_tensors = len(tensors)
|
9 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
10 |
+
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
11 |
+
shape_len = list(shape_lens)[0]
|
12 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
13 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
14 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
15 |
+
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
16 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
17 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
18 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
19 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
20 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
21 |
+
return torch.cat(tensors, dim = dim)
|
22 |
+
|
23 |
+
def rotate_half(x):
|
24 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
25 |
+
x1, x2 = x.unbind(dim = -1)
|
26 |
+
x = torch.stack((-x2, x1), dim = -1)
|
27 |
+
return rearrange(x, '... d r -> ... (d r)')
|
28 |
+
|
29 |
+
|
30 |
+
class VisionRotaryEmbedding(nn.Module):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
dim,
|
34 |
+
pt_seq_len,
|
35 |
+
ft_seq_len=None,
|
36 |
+
custom_freqs = None,
|
37 |
+
freqs_for = 'lang',
|
38 |
+
theta = 10000,
|
39 |
+
max_freq = 10,
|
40 |
+
num_freqs = 1,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
if custom_freqs:
|
44 |
+
freqs = custom_freqs
|
45 |
+
elif freqs_for == 'lang':
|
46 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
47 |
+
elif freqs_for == 'pixel':
|
48 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
49 |
+
elif freqs_for == 'constant':
|
50 |
+
freqs = torch.ones(num_freqs).float()
|
51 |
+
else:
|
52 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
53 |
+
|
54 |
+
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
55 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
56 |
+
|
57 |
+
freqs_h = torch.einsum('..., f -> ... f', t, freqs)
|
58 |
+
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
|
59 |
+
|
60 |
+
freqs_w = torch.einsum('..., f -> ... f', t, freqs)
|
61 |
+
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
|
62 |
+
|
63 |
+
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1)
|
64 |
+
|
65 |
+
self.register_buffer("freqs_cos", freqs.cos())
|
66 |
+
self.register_buffer("freqs_sin", freqs.sin())
|
67 |
+
|
68 |
+
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
69 |
+
|
70 |
+
def forward(self, t, start_index = 0):
|
71 |
+
rot_dim = self.freqs_cos.shape[-1]
|
72 |
+
end_index = start_index + rot_dim
|
73 |
+
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
|
74 |
+
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
75 |
+
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
|
76 |
+
|
77 |
+
return torch.cat((t_left, t, t_right), dim = -1)
|
78 |
+
|
79 |
+
class VisionRotaryEmbeddingFast(nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
dim,
|
83 |
+
pt_seq_len,
|
84 |
+
ft_seq_len=None,
|
85 |
+
custom_freqs = None,
|
86 |
+
freqs_for = 'lang',
|
87 |
+
theta = 10000,
|
88 |
+
max_freq = 10,
|
89 |
+
num_freqs = 1,
|
90 |
+
patch_dropout = 0.
|
91 |
+
):
|
92 |
+
super().__init__()
|
93 |
+
if custom_freqs:
|
94 |
+
freqs = custom_freqs
|
95 |
+
elif freqs_for == 'lang':
|
96 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
97 |
+
elif freqs_for == 'pixel':
|
98 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
99 |
+
elif freqs_for == 'constant':
|
100 |
+
freqs = torch.ones(num_freqs).float()
|
101 |
+
else:
|
102 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
103 |
+
|
104 |
+
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
105 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
106 |
+
|
107 |
+
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
108 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
109 |
+
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
110 |
+
|
111 |
+
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
112 |
+
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
113 |
+
|
114 |
+
self.patch_dropout = patch_dropout
|
115 |
+
|
116 |
+
self.register_buffer("freqs_cos", freqs_cos)
|
117 |
+
self.register_buffer("freqs_sin", freqs_sin)
|
118 |
+
|
119 |
+
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
120 |
+
|
121 |
+
def forward(self, t, patch_indices_keep=None):
|
122 |
+
if patch_indices_keep is not None:
|
123 |
+
batch = t.size()[0]
|
124 |
+
batch_indices = torch.arange(batch)
|
125 |
+
batch_indices = batch_indices[..., None]
|
126 |
+
|
127 |
+
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
128 |
+
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
129 |
+
|
130 |
+
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
131 |
+
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
132 |
+
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
133 |
+
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
134 |
+
|
135 |
+
return t * freqs_cos + rotate_half(t) * freqs_sin
|
136 |
+
|
137 |
+
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
PuLID_ComfyUI/eva_clip/timm_model.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" timm model adapter
|
2 |
+
|
3 |
+
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
|
4 |
+
"""
|
5 |
+
import logging
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
try:
|
12 |
+
import timm
|
13 |
+
from timm.models.layers import Mlp, to_2tuple
|
14 |
+
try:
|
15 |
+
# old timm imports < 0.8.1
|
16 |
+
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
17 |
+
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
|
18 |
+
except ImportError:
|
19 |
+
# new timm imports >= 0.8.1
|
20 |
+
from timm.layers import RotAttentionPool2d
|
21 |
+
from timm.layers import AttentionPool2d as AbsAttentionPool2d
|
22 |
+
except ImportError:
|
23 |
+
timm = None
|
24 |
+
|
25 |
+
from .utils import freeze_batch_norm_2d
|
26 |
+
|
27 |
+
|
28 |
+
class TimmModel(nn.Module):
|
29 |
+
""" timm model adapter
|
30 |
+
# FIXME this adapter is a work in progress, may change in ways that break weight compat
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
model_name,
|
36 |
+
embed_dim,
|
37 |
+
image_size=224,
|
38 |
+
pool='avg',
|
39 |
+
proj='linear',
|
40 |
+
proj_bias=False,
|
41 |
+
drop=0.,
|
42 |
+
pretrained=False):
|
43 |
+
super().__init__()
|
44 |
+
if timm is None:
|
45 |
+
raise RuntimeError("Please `pip install timm` to use timm models.")
|
46 |
+
|
47 |
+
self.image_size = to_2tuple(image_size)
|
48 |
+
self.trunk = timm.create_model(model_name, pretrained=pretrained)
|
49 |
+
feat_size = self.trunk.default_cfg.get('pool_size', None)
|
50 |
+
feature_ndim = 1 if not feat_size else 2
|
51 |
+
if pool in ('abs_attn', 'rot_attn'):
|
52 |
+
assert feature_ndim == 2
|
53 |
+
# if attn pooling used, remove both classifier and default pool
|
54 |
+
self.trunk.reset_classifier(0, global_pool='')
|
55 |
+
else:
|
56 |
+
# reset global pool if pool config set, otherwise leave as network default
|
57 |
+
reset_kwargs = dict(global_pool=pool) if pool else {}
|
58 |
+
self.trunk.reset_classifier(0, **reset_kwargs)
|
59 |
+
prev_chs = self.trunk.num_features
|
60 |
+
|
61 |
+
head_layers = OrderedDict()
|
62 |
+
if pool == 'abs_attn':
|
63 |
+
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
|
64 |
+
prev_chs = embed_dim
|
65 |
+
elif pool == 'rot_attn':
|
66 |
+
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
67 |
+
prev_chs = embed_dim
|
68 |
+
else:
|
69 |
+
assert proj, 'projection layer needed if non-attention pooling is used.'
|
70 |
+
|
71 |
+
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
72 |
+
if proj == 'linear':
|
73 |
+
head_layers['drop'] = nn.Dropout(drop)
|
74 |
+
head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
|
75 |
+
elif proj == 'mlp':
|
76 |
+
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias))
|
77 |
+
|
78 |
+
self.head = nn.Sequential(head_layers)
|
79 |
+
|
80 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
81 |
+
""" lock modules
|
82 |
+
Args:
|
83 |
+
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
84 |
+
"""
|
85 |
+
if not unlocked_groups:
|
86 |
+
# lock full model
|
87 |
+
for param in self.trunk.parameters():
|
88 |
+
param.requires_grad = False
|
89 |
+
if freeze_bn_stats:
|
90 |
+
freeze_batch_norm_2d(self.trunk)
|
91 |
+
else:
|
92 |
+
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
93 |
+
try:
|
94 |
+
# FIXME import here until API stable and in an official release
|
95 |
+
from timm.models.helpers import group_parameters, group_modules
|
96 |
+
except ImportError:
|
97 |
+
raise RuntimeError(
|
98 |
+
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
|
99 |
+
matcher = self.trunk.group_matcher()
|
100 |
+
gparams = group_parameters(self.trunk, matcher)
|
101 |
+
max_layer_id = max(gparams.keys())
|
102 |
+
max_layer_id = max_layer_id - unlocked_groups
|
103 |
+
for group_idx in range(max_layer_id + 1):
|
104 |
+
group = gparams[group_idx]
|
105 |
+
for param in group:
|
106 |
+
self.trunk.get_parameter(param).requires_grad = False
|
107 |
+
if freeze_bn_stats:
|
108 |
+
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
109 |
+
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
110 |
+
freeze_batch_norm_2d(self.trunk, gmodules)
|
111 |
+
|
112 |
+
@torch.jit.ignore
|
113 |
+
def set_grad_checkpointing(self, enable=True):
|
114 |
+
try:
|
115 |
+
self.trunk.set_grad_checkpointing(enable)
|
116 |
+
except Exception as e:
|
117 |
+
logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
x = self.trunk(x)
|
121 |
+
x = self.head(x)
|
122 |
+
return x
|
PuLID_ComfyUI/eva_clip/tokenizer.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP tokenizer
|
2 |
+
|
3 |
+
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
import gzip
|
6 |
+
import html
|
7 |
+
import os
|
8 |
+
from functools import lru_cache
|
9 |
+
from typing import Union, List
|
10 |
+
|
11 |
+
import ftfy
|
12 |
+
import regex as re
|
13 |
+
import torch
|
14 |
+
|
15 |
+
# https://stackoverflow.com/q/62691279
|
16 |
+
import os
|
17 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
18 |
+
|
19 |
+
|
20 |
+
@lru_cache()
|
21 |
+
def default_bpe():
|
22 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
23 |
+
|
24 |
+
|
25 |
+
@lru_cache()
|
26 |
+
def bytes_to_unicode():
|
27 |
+
"""
|
28 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
29 |
+
The reversible bpe codes work on unicode strings.
|
30 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
31 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
32 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
33 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
34 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
35 |
+
"""
|
36 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
37 |
+
cs = bs[:]
|
38 |
+
n = 0
|
39 |
+
for b in range(2**8):
|
40 |
+
if b not in bs:
|
41 |
+
bs.append(b)
|
42 |
+
cs.append(2**8+n)
|
43 |
+
n += 1
|
44 |
+
cs = [chr(n) for n in cs]
|
45 |
+
return dict(zip(bs, cs))
|
46 |
+
|
47 |
+
|
48 |
+
def get_pairs(word):
|
49 |
+
"""Return set of symbol pairs in a word.
|
50 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
51 |
+
"""
|
52 |
+
pairs = set()
|
53 |
+
prev_char = word[0]
|
54 |
+
for char in word[1:]:
|
55 |
+
pairs.add((prev_char, char))
|
56 |
+
prev_char = char
|
57 |
+
return pairs
|
58 |
+
|
59 |
+
|
60 |
+
def basic_clean(text):
|
61 |
+
text = ftfy.fix_text(text)
|
62 |
+
text = html.unescape(html.unescape(text))
|
63 |
+
return text.strip()
|
64 |
+
|
65 |
+
|
66 |
+
def whitespace_clean(text):
|
67 |
+
text = re.sub(r'\s+', ' ', text)
|
68 |
+
text = text.strip()
|
69 |
+
return text
|
70 |
+
|
71 |
+
|
72 |
+
class SimpleTokenizer(object):
|
73 |
+
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
74 |
+
self.byte_encoder = bytes_to_unicode()
|
75 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
76 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
77 |
+
merges = merges[1:49152-256-2+1]
|
78 |
+
merges = [tuple(merge.split()) for merge in merges]
|
79 |
+
vocab = list(bytes_to_unicode().values())
|
80 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
81 |
+
for merge in merges:
|
82 |
+
vocab.append(''.join(merge))
|
83 |
+
if not special_tokens:
|
84 |
+
special_tokens = ['<start_of_text>', '<end_of_text>']
|
85 |
+
else:
|
86 |
+
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
|
87 |
+
vocab.extend(special_tokens)
|
88 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
89 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
90 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
91 |
+
self.cache = {t:t for t in special_tokens}
|
92 |
+
special = "|".join(special_tokens)
|
93 |
+
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
94 |
+
|
95 |
+
self.vocab_size = len(self.encoder)
|
96 |
+
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
97 |
+
|
98 |
+
def bpe(self, token):
|
99 |
+
if token in self.cache:
|
100 |
+
return self.cache[token]
|
101 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
102 |
+
pairs = get_pairs(word)
|
103 |
+
|
104 |
+
if not pairs:
|
105 |
+
return token+'</w>'
|
106 |
+
|
107 |
+
while True:
|
108 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
109 |
+
if bigram not in self.bpe_ranks:
|
110 |
+
break
|
111 |
+
first, second = bigram
|
112 |
+
new_word = []
|
113 |
+
i = 0
|
114 |
+
while i < len(word):
|
115 |
+
try:
|
116 |
+
j = word.index(first, i)
|
117 |
+
new_word.extend(word[i:j])
|
118 |
+
i = j
|
119 |
+
except:
|
120 |
+
new_word.extend(word[i:])
|
121 |
+
break
|
122 |
+
|
123 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
124 |
+
new_word.append(first+second)
|
125 |
+
i += 2
|
126 |
+
else:
|
127 |
+
new_word.append(word[i])
|
128 |
+
i += 1
|
129 |
+
new_word = tuple(new_word)
|
130 |
+
word = new_word
|
131 |
+
if len(word) == 1:
|
132 |
+
break
|
133 |
+
else:
|
134 |
+
pairs = get_pairs(word)
|
135 |
+
word = ' '.join(word)
|
136 |
+
self.cache[token] = word
|
137 |
+
return word
|
138 |
+
|
139 |
+
def encode(self, text):
|
140 |
+
bpe_tokens = []
|
141 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
142 |
+
for token in re.findall(self.pat, text):
|
143 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
144 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
145 |
+
return bpe_tokens
|
146 |
+
|
147 |
+
def decode(self, tokens):
|
148 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
149 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
150 |
+
return text
|
151 |
+
|
152 |
+
|
153 |
+
_tokenizer = SimpleTokenizer()
|
154 |
+
|
155 |
+
|
156 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
|
157 |
+
"""
|
158 |
+
Returns the tokenized representation of given input string(s)
|
159 |
+
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
texts : Union[str, List[str]]
|
163 |
+
An input string or a list of input strings to tokenize
|
164 |
+
context_length : int
|
165 |
+
The context length to use; all CLIP models use 77 as the context length
|
166 |
+
|
167 |
+
Returns
|
168 |
+
-------
|
169 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
170 |
+
"""
|
171 |
+
if isinstance(texts, str):
|
172 |
+
texts = [texts]
|
173 |
+
|
174 |
+
sot_token = _tokenizer.encoder["<start_of_text>"]
|
175 |
+
eot_token = _tokenizer.encoder["<end_of_text>"]
|
176 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
177 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
178 |
+
|
179 |
+
for i, tokens in enumerate(all_tokens):
|
180 |
+
if len(tokens) > context_length:
|
181 |
+
tokens = tokens[:context_length] # Truncate
|
182 |
+
tokens[-1] = eot_token
|
183 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
184 |
+
|
185 |
+
return result
|
186 |
+
|
187 |
+
|
188 |
+
class HFTokenizer:
|
189 |
+
"HuggingFace tokenizer wrapper"
|
190 |
+
def __init__(self, tokenizer_name:str):
|
191 |
+
from transformers import AutoTokenizer
|
192 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
193 |
+
|
194 |
+
def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor:
|
195 |
+
# same cleaning as for default tokenizer, except lowercasing
|
196 |
+
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
197 |
+
if isinstance(texts, str):
|
198 |
+
texts = [texts]
|
199 |
+
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
200 |
+
input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids
|
201 |
+
return input_ids
|
PuLID_ComfyUI/eva_clip/transform.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Sequence, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torchvision.transforms.functional as F
|
6 |
+
|
7 |
+
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
|
8 |
+
CenterCrop
|
9 |
+
|
10 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
11 |
+
|
12 |
+
|
13 |
+
class ResizeMaxSize(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
|
16 |
+
super().__init__()
|
17 |
+
if not isinstance(max_size, int):
|
18 |
+
raise TypeError(f"Size should be int. Got {type(max_size)}")
|
19 |
+
self.max_size = max_size
|
20 |
+
self.interpolation = interpolation
|
21 |
+
self.fn = min if fn == 'min' else min
|
22 |
+
self.fill = fill
|
23 |
+
|
24 |
+
def forward(self, img):
|
25 |
+
if isinstance(img, torch.Tensor):
|
26 |
+
height, width = img.shape[:2]
|
27 |
+
else:
|
28 |
+
width, height = img.size
|
29 |
+
scale = self.max_size / float(max(height, width))
|
30 |
+
if scale != 1.0:
|
31 |
+
new_size = tuple(round(dim * scale) for dim in (height, width))
|
32 |
+
img = F.resize(img, new_size, self.interpolation)
|
33 |
+
pad_h = self.max_size - new_size[0]
|
34 |
+
pad_w = self.max_size - new_size[1]
|
35 |
+
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
|
36 |
+
return img
|
37 |
+
|
38 |
+
|
39 |
+
def _convert_to_rgb(image):
|
40 |
+
return image.convert('RGB')
|
41 |
+
|
42 |
+
|
43 |
+
# class CatGen(nn.Module):
|
44 |
+
# def __init__(self, num=4):
|
45 |
+
# self.num = num
|
46 |
+
# def mixgen_batch(image, text):
|
47 |
+
# batch_size = image.shape[0]
|
48 |
+
# index = np.random.permutation(batch_size)
|
49 |
+
|
50 |
+
# cat_images = []
|
51 |
+
# for i in range(batch_size):
|
52 |
+
# # image mixup
|
53 |
+
# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:]
|
54 |
+
# # text concat
|
55 |
+
# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0]
|
56 |
+
# text = torch.stack(text)
|
57 |
+
# return image, text
|
58 |
+
|
59 |
+
|
60 |
+
def image_transform(
|
61 |
+
image_size: int,
|
62 |
+
is_train: bool,
|
63 |
+
mean: Optional[Tuple[float, ...]] = None,
|
64 |
+
std: Optional[Tuple[float, ...]] = None,
|
65 |
+
resize_longest_max: bool = False,
|
66 |
+
fill_color: int = 0,
|
67 |
+
):
|
68 |
+
mean = mean or OPENAI_DATASET_MEAN
|
69 |
+
if not isinstance(mean, (list, tuple)):
|
70 |
+
mean = (mean,) * 3
|
71 |
+
|
72 |
+
std = std or OPENAI_DATASET_STD
|
73 |
+
if not isinstance(std, (list, tuple)):
|
74 |
+
std = (std,) * 3
|
75 |
+
|
76 |
+
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
|
77 |
+
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
|
78 |
+
image_size = image_size[0]
|
79 |
+
|
80 |
+
normalize = Normalize(mean=mean, std=std)
|
81 |
+
if is_train:
|
82 |
+
return Compose([
|
83 |
+
RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC),
|
84 |
+
_convert_to_rgb,
|
85 |
+
ToTensor(),
|
86 |
+
normalize,
|
87 |
+
])
|
88 |
+
else:
|
89 |
+
if resize_longest_max:
|
90 |
+
transforms = [
|
91 |
+
ResizeMaxSize(image_size, fill=fill_color)
|
92 |
+
]
|
93 |
+
else:
|
94 |
+
transforms = [
|
95 |
+
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
96 |
+
CenterCrop(image_size),
|
97 |
+
]
|
98 |
+
transforms.extend([
|
99 |
+
_convert_to_rgb,
|
100 |
+
ToTensor(),
|
101 |
+
normalize,
|
102 |
+
])
|
103 |
+
return Compose(transforms)
|
PuLID_ComfyUI/eva_clip/transformer.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from collections import OrderedDict
|
4 |
+
import math
|
5 |
+
from typing import Callable, Optional, Sequence
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
try:
|
12 |
+
from timm.models.layers import trunc_normal_
|
13 |
+
except:
|
14 |
+
from timm.layers import trunc_normal_
|
15 |
+
|
16 |
+
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
+
from .utils import to_2tuple
|
18 |
+
|
19 |
+
if os.getenv('ENV_TYPE') == 'deepspeed':
|
20 |
+
try:
|
21 |
+
import deepspeed
|
22 |
+
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
23 |
+
except:
|
24 |
+
print("Please 'pip install deepspeed'")
|
25 |
+
deepspeed = None
|
26 |
+
from torch.utils.checkpoint import checkpoint
|
27 |
+
else:
|
28 |
+
from torch.utils.checkpoint import checkpoint
|
29 |
+
|
30 |
+
try:
|
31 |
+
import xformers.ops as xops
|
32 |
+
except ImportError:
|
33 |
+
xops = None
|
34 |
+
print("Please 'pip install xformers'")
|
35 |
+
|
36 |
+
class LayerNormFp32(nn.LayerNorm):
|
37 |
+
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
38 |
+
def __init__(self, *args, **kwargs):
|
39 |
+
super().__init__(*args, **kwargs)
|
40 |
+
|
41 |
+
def forward(self, x: torch.Tensor):
|
42 |
+
output = F.layer_norm(
|
43 |
+
x.float(),
|
44 |
+
self.normalized_shape,
|
45 |
+
self.weight.float() if self.weight is not None else None,
|
46 |
+
self.bias.float() if self.bias is not None else None,
|
47 |
+
self.eps,
|
48 |
+
)
|
49 |
+
return output.type_as(x)
|
50 |
+
|
51 |
+
|
52 |
+
class LayerNorm(nn.LayerNorm):
|
53 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
54 |
+
|
55 |
+
def forward(self, x: torch.Tensor):
|
56 |
+
orig_type = x.dtype
|
57 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
58 |
+
return x.to(orig_type)
|
59 |
+
|
60 |
+
class QuickGELU(nn.Module):
|
61 |
+
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
62 |
+
def forward(self, x: torch.Tensor):
|
63 |
+
return x * torch.sigmoid(1.702 * x)
|
64 |
+
|
65 |
+
|
66 |
+
class LayerScale(nn.Module):
|
67 |
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
68 |
+
super().__init__()
|
69 |
+
self.inplace = inplace
|
70 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
74 |
+
|
75 |
+
class PatchDropout(nn.Module):
|
76 |
+
"""
|
77 |
+
https://arxiv.org/abs/2212.00794
|
78 |
+
"""
|
79 |
+
|
80 |
+
def __init__(self, prob, exclude_first_token=True):
|
81 |
+
super().__init__()
|
82 |
+
assert 0 <= prob < 1.
|
83 |
+
self.prob = prob
|
84 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
85 |
+
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
if not self.training or self.prob == 0.:
|
89 |
+
return x
|
90 |
+
|
91 |
+
if self.exclude_first_token:
|
92 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
93 |
+
else:
|
94 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
95 |
+
|
96 |
+
batch = x.size()[0]
|
97 |
+
num_tokens = x.size()[1]
|
98 |
+
|
99 |
+
batch_indices = torch.arange(batch)
|
100 |
+
batch_indices = batch_indices[..., None]
|
101 |
+
|
102 |
+
keep_prob = 1 - self.prob
|
103 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
104 |
+
|
105 |
+
rand = torch.randn(batch, num_tokens)
|
106 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
107 |
+
|
108 |
+
x = x[batch_indices, patch_indices_keep]
|
109 |
+
|
110 |
+
if self.exclude_first_token:
|
111 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
112 |
+
|
113 |
+
if self.training and os.getenv('RoPE') == '1':
|
114 |
+
return x, patch_indices_keep
|
115 |
+
|
116 |
+
return x
|
117 |
+
|
118 |
+
|
119 |
+
def _in_projection_packed(
|
120 |
+
q: torch.Tensor,
|
121 |
+
k: torch.Tensor,
|
122 |
+
v: torch.Tensor,
|
123 |
+
w: torch.Tensor,
|
124 |
+
b: Optional[torch.Tensor] = None,
|
125 |
+
):
|
126 |
+
"""
|
127 |
+
https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726
|
128 |
+
"""
|
129 |
+
E = q.size(-1)
|
130 |
+
if k is v:
|
131 |
+
if q is k:
|
132 |
+
# self-attention
|
133 |
+
return F.linear(q, w, b).chunk(3, dim=-1)
|
134 |
+
else:
|
135 |
+
# encoder-decoder attention
|
136 |
+
w_q, w_kv = w.split([E, E * 2])
|
137 |
+
if b is None:
|
138 |
+
b_q = b_kv = None
|
139 |
+
else:
|
140 |
+
b_q, b_kv = b.split([E, E * 2])
|
141 |
+
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
|
142 |
+
else:
|
143 |
+
w_q, w_k, w_v = w.chunk(3)
|
144 |
+
if b is None:
|
145 |
+
b_q = b_k = b_v = None
|
146 |
+
else:
|
147 |
+
b_q, b_k, b_v = b.chunk(3)
|
148 |
+
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
|
149 |
+
|
150 |
+
class Attention(nn.Module):
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
dim,
|
154 |
+
num_heads=8,
|
155 |
+
qkv_bias=True,
|
156 |
+
scaled_cosine=False,
|
157 |
+
scale_heads=False,
|
158 |
+
logit_scale_max=math.log(1. / 0.01),
|
159 |
+
attn_drop=0.,
|
160 |
+
proj_drop=0.,
|
161 |
+
xattn=False,
|
162 |
+
rope=False
|
163 |
+
):
|
164 |
+
super().__init__()
|
165 |
+
self.scaled_cosine = scaled_cosine
|
166 |
+
self.scale_heads = scale_heads
|
167 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
168 |
+
self.num_heads = num_heads
|
169 |
+
self.head_dim = dim // num_heads
|
170 |
+
self.scale = self.head_dim ** -0.5
|
171 |
+
self.logit_scale_max = logit_scale_max
|
172 |
+
|
173 |
+
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
174 |
+
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
175 |
+
if qkv_bias:
|
176 |
+
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
177 |
+
else:
|
178 |
+
self.in_proj_bias = None
|
179 |
+
|
180 |
+
if self.scaled_cosine:
|
181 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
182 |
+
else:
|
183 |
+
self.logit_scale = None
|
184 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
185 |
+
if self.scale_heads:
|
186 |
+
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
187 |
+
else:
|
188 |
+
self.head_scale = None
|
189 |
+
self.out_proj = nn.Linear(dim, dim)
|
190 |
+
self.out_drop = nn.Dropout(proj_drop)
|
191 |
+
self.xattn = xattn
|
192 |
+
self.xattn_drop = attn_drop
|
193 |
+
self.rope = rope
|
194 |
+
|
195 |
+
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
|
196 |
+
L, N, C = x.shape
|
197 |
+
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
|
198 |
+
if self.xattn:
|
199 |
+
q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
200 |
+
k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
201 |
+
v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
202 |
+
|
203 |
+
x = xops.memory_efficient_attention(
|
204 |
+
q, k, v,
|
205 |
+
p=self.xattn_drop,
|
206 |
+
scale=self.scale if self.logit_scale is None else None,
|
207 |
+
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None,
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
211 |
+
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
212 |
+
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
213 |
+
|
214 |
+
if self.logit_scale is not None:
|
215 |
+
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
216 |
+
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
217 |
+
attn = attn.view(N, self.num_heads, L, L) * logit_scale
|
218 |
+
attn = attn.view(-1, L, L)
|
219 |
+
else:
|
220 |
+
q = q * self.scale
|
221 |
+
attn = torch.bmm(q, k.transpose(-1, -2))
|
222 |
+
|
223 |
+
if attn_mask is not None:
|
224 |
+
if attn_mask.dtype == torch.bool:
|
225 |
+
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
226 |
+
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
227 |
+
attn_mask = new_attn_mask
|
228 |
+
attn += attn_mask
|
229 |
+
|
230 |
+
attn = attn.softmax(dim=-1)
|
231 |
+
attn = self.attn_drop(attn)
|
232 |
+
|
233 |
+
x = torch.bmm(attn, v)
|
234 |
+
|
235 |
+
if self.head_scale is not None:
|
236 |
+
x = x.view(N, self.num_heads, L, C) * self.head_scale
|
237 |
+
x = x.view(-1, L, C)
|
238 |
+
x = x.transpose(0, 1).reshape(L, N, C)
|
239 |
+
x = self.out_proj(x)
|
240 |
+
x = self.out_drop(x)
|
241 |
+
return x
|
242 |
+
|
243 |
+
class CustomAttention(nn.Module):
|
244 |
+
def __init__(
|
245 |
+
self,
|
246 |
+
dim,
|
247 |
+
num_heads=8,
|
248 |
+
qkv_bias=True,
|
249 |
+
scaled_cosine=True,
|
250 |
+
scale_heads=False,
|
251 |
+
logit_scale_max=math.log(1. / 0.01),
|
252 |
+
attn_drop=0.,
|
253 |
+
proj_drop=0.,
|
254 |
+
xattn=False
|
255 |
+
):
|
256 |
+
super().__init__()
|
257 |
+
self.scaled_cosine = scaled_cosine
|
258 |
+
self.scale_heads = scale_heads
|
259 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
260 |
+
self.num_heads = num_heads
|
261 |
+
self.head_dim = dim // num_heads
|
262 |
+
self.scale = self.head_dim ** -0.5
|
263 |
+
self.logit_scale_max = logit_scale_max
|
264 |
+
|
265 |
+
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
266 |
+
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
267 |
+
if qkv_bias:
|
268 |
+
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
269 |
+
else:
|
270 |
+
self.in_proj_bias = None
|
271 |
+
|
272 |
+
if self.scaled_cosine:
|
273 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
274 |
+
else:
|
275 |
+
self.logit_scale = None
|
276 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
277 |
+
if self.scale_heads:
|
278 |
+
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
279 |
+
else:
|
280 |
+
self.head_scale = None
|
281 |
+
self.out_proj = nn.Linear(dim, dim)
|
282 |
+
self.out_drop = nn.Dropout(proj_drop)
|
283 |
+
self.xattn = xattn
|
284 |
+
self.xattn_drop = attn_drop
|
285 |
+
|
286 |
+
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
287 |
+
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
|
288 |
+
N_q, B_q, C_q = q.shape
|
289 |
+
N_k, B_k, C_k = k.shape
|
290 |
+
N_v, B_v, C_v = v.shape
|
291 |
+
if self.xattn:
|
292 |
+
# B, N, C -> B, N, num_heads, C
|
293 |
+
q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1)
|
294 |
+
k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1)
|
295 |
+
v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1)
|
296 |
+
|
297 |
+
x = xops.memory_efficient_attention(
|
298 |
+
q, k, v,
|
299 |
+
p=self.xattn_drop,
|
300 |
+
scale=self.scale if self.logit_scale is None else None,
|
301 |
+
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
# B*H, L, C
|
305 |
+
q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1)
|
306 |
+
k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1)
|
307 |
+
v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1)
|
308 |
+
|
309 |
+
if self.logit_scale is not None:
|
310 |
+
# B*H, N_q, N_k
|
311 |
+
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
312 |
+
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
313 |
+
attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale
|
314 |
+
attn = attn.view(-1, N_q, N_k)
|
315 |
+
else:
|
316 |
+
q = q * self.scale
|
317 |
+
attn = torch.bmm(q, k.transpose(-1, -2))
|
318 |
+
|
319 |
+
if attn_mask is not None:
|
320 |
+
if attn_mask.dtype == torch.bool:
|
321 |
+
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
322 |
+
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
323 |
+
attn_mask = new_attn_mask
|
324 |
+
attn += attn_mask
|
325 |
+
|
326 |
+
attn = attn.softmax(dim=-1)
|
327 |
+
attn = self.attn_drop(attn)
|
328 |
+
|
329 |
+
x = torch.bmm(attn, v)
|
330 |
+
|
331 |
+
if self.head_scale is not None:
|
332 |
+
x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale
|
333 |
+
x = x.view(-1, N_q, C_q)
|
334 |
+
x = x.transpose(0, 1).reshape(N_q, B_q, C_q)
|
335 |
+
x = self.out_proj(x)
|
336 |
+
x = self.out_drop(x)
|
337 |
+
return x
|
338 |
+
|
339 |
+
class CustomResidualAttentionBlock(nn.Module):
|
340 |
+
def __init__(
|
341 |
+
self,
|
342 |
+
d_model: int,
|
343 |
+
n_head: int,
|
344 |
+
mlp_ratio: float = 4.0,
|
345 |
+
ls_init_value: float = None,
|
346 |
+
act_layer: Callable = nn.GELU,
|
347 |
+
norm_layer: Callable = LayerNorm,
|
348 |
+
scale_cosine_attn: bool = False,
|
349 |
+
scale_heads: bool = False,
|
350 |
+
scale_attn: bool = False,
|
351 |
+
scale_fc: bool = False,
|
352 |
+
cross_attn: bool = False,
|
353 |
+
xattn: bool = False,
|
354 |
+
):
|
355 |
+
super().__init__()
|
356 |
+
|
357 |
+
self.ln_1 = norm_layer(d_model)
|
358 |
+
self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1
|
359 |
+
self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1
|
360 |
+
self.attn = CustomAttention(
|
361 |
+
d_model, n_head,
|
362 |
+
qkv_bias=True,
|
363 |
+
attn_drop=0.,
|
364 |
+
proj_drop=0.,
|
365 |
+
scaled_cosine=scale_cosine_attn,
|
366 |
+
scale_heads=scale_heads,
|
367 |
+
xattn=xattn
|
368 |
+
)
|
369 |
+
|
370 |
+
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
|
371 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
372 |
+
|
373 |
+
self.ln_2 = norm_layer(d_model)
|
374 |
+
mlp_width = int(d_model * mlp_ratio)
|
375 |
+
self.mlp = nn.Sequential(OrderedDict([
|
376 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
377 |
+
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
|
378 |
+
("gelu", act_layer()),
|
379 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
380 |
+
]))
|
381 |
+
|
382 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
383 |
+
|
384 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
385 |
+
q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask)))
|
386 |
+
q = q + self.ls_2(self.mlp(self.ln_2(q)))
|
387 |
+
return q
|
388 |
+
|
389 |
+
class CustomTransformer(nn.Module):
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
width: int,
|
393 |
+
layers: int,
|
394 |
+
heads: int,
|
395 |
+
mlp_ratio: float = 4.0,
|
396 |
+
ls_init_value: float = None,
|
397 |
+
act_layer: Callable = nn.GELU,
|
398 |
+
norm_layer: Callable = LayerNorm,
|
399 |
+
scale_cosine_attn: bool = True,
|
400 |
+
scale_heads: bool = False,
|
401 |
+
scale_attn: bool = False,
|
402 |
+
scale_fc: bool = False,
|
403 |
+
cross_attn: bool = False,
|
404 |
+
xattn: bool = False,
|
405 |
+
):
|
406 |
+
super().__init__()
|
407 |
+
self.width = width
|
408 |
+
self.layers = layers
|
409 |
+
self.grad_checkpointing = False
|
410 |
+
self.xattn = xattn
|
411 |
+
|
412 |
+
self.resblocks = nn.ModuleList([
|
413 |
+
CustomResidualAttentionBlock(
|
414 |
+
width,
|
415 |
+
heads,
|
416 |
+
mlp_ratio,
|
417 |
+
ls_init_value=ls_init_value,
|
418 |
+
act_layer=act_layer,
|
419 |
+
norm_layer=norm_layer,
|
420 |
+
scale_cosine_attn=scale_cosine_attn,
|
421 |
+
scale_heads=scale_heads,
|
422 |
+
scale_attn=scale_attn,
|
423 |
+
scale_fc=scale_fc,
|
424 |
+
cross_attn=cross_attn,
|
425 |
+
xattn=xattn)
|
426 |
+
for _ in range(layers)
|
427 |
+
])
|
428 |
+
|
429 |
+
def get_cast_dtype(self) -> torch.dtype:
|
430 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
431 |
+
|
432 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None):
|
433 |
+
if k is None and v is None:
|
434 |
+
k = v = q
|
435 |
+
for r in self.resblocks:
|
436 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
437 |
+
q = checkpoint(r, q, k, v, attn_mask)
|
438 |
+
else:
|
439 |
+
q = r(q, k, v, attn_mask=attn_mask)
|
440 |
+
return q
|
441 |
+
|
442 |
+
|
443 |
+
class ResidualAttentionBlock(nn.Module):
|
444 |
+
def __init__(
|
445 |
+
self,
|
446 |
+
d_model: int,
|
447 |
+
n_head: int,
|
448 |
+
mlp_ratio: float = 4.0,
|
449 |
+
ls_init_value: float = None,
|
450 |
+
act_layer: Callable = nn.GELU,
|
451 |
+
norm_layer: Callable = LayerNorm,
|
452 |
+
xattn: bool = False,
|
453 |
+
):
|
454 |
+
super().__init__()
|
455 |
+
|
456 |
+
self.ln_1 = norm_layer(d_model)
|
457 |
+
if xattn:
|
458 |
+
self.attn = Attention(d_model, n_head, xattn=True)
|
459 |
+
else:
|
460 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
461 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
462 |
+
|
463 |
+
self.ln_2 = norm_layer(d_model)
|
464 |
+
mlp_width = int(d_model * mlp_ratio)
|
465 |
+
self.mlp = nn.Sequential(OrderedDict([
|
466 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
467 |
+
("gelu", act_layer()),
|
468 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
469 |
+
]))
|
470 |
+
|
471 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
472 |
+
self.xattn = xattn
|
473 |
+
|
474 |
+
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
475 |
+
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
|
476 |
+
if self.xattn:
|
477 |
+
return self.attn(x, attn_mask=attn_mask)
|
478 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
479 |
+
|
480 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
481 |
+
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
|
482 |
+
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
483 |
+
return x
|
484 |
+
|
485 |
+
class Transformer(nn.Module):
|
486 |
+
def __init__(
|
487 |
+
self,
|
488 |
+
width: int,
|
489 |
+
layers: int,
|
490 |
+
heads: int,
|
491 |
+
mlp_ratio: float = 4.0,
|
492 |
+
ls_init_value: float = None,
|
493 |
+
act_layer: Callable = nn.GELU,
|
494 |
+
norm_layer: Callable = LayerNorm,
|
495 |
+
xattn: bool = False,
|
496 |
+
):
|
497 |
+
super().__init__()
|
498 |
+
self.width = width
|
499 |
+
self.layers = layers
|
500 |
+
self.grad_checkpointing = False
|
501 |
+
|
502 |
+
self.resblocks = nn.ModuleList([
|
503 |
+
ResidualAttentionBlock(
|
504 |
+
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn)
|
505 |
+
for _ in range(layers)
|
506 |
+
])
|
507 |
+
|
508 |
+
def get_cast_dtype(self) -> torch.dtype:
|
509 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
510 |
+
|
511 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
512 |
+
for r in self.resblocks:
|
513 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
514 |
+
x = checkpoint(r, x, attn_mask)
|
515 |
+
else:
|
516 |
+
x = r(x, attn_mask=attn_mask)
|
517 |
+
return x
|
518 |
+
|
519 |
+
|
520 |
+
class VisionTransformer(nn.Module):
|
521 |
+
def __init__(
|
522 |
+
self,
|
523 |
+
image_size: int,
|
524 |
+
patch_size: int,
|
525 |
+
width: int,
|
526 |
+
layers: int,
|
527 |
+
heads: int,
|
528 |
+
mlp_ratio: float,
|
529 |
+
ls_init_value: float = None,
|
530 |
+
patch_dropout: float = 0.,
|
531 |
+
global_average_pool: bool = False,
|
532 |
+
output_dim: int = 512,
|
533 |
+
act_layer: Callable = nn.GELU,
|
534 |
+
norm_layer: Callable = LayerNorm,
|
535 |
+
xattn: bool = False,
|
536 |
+
):
|
537 |
+
super().__init__()
|
538 |
+
self.image_size = to_2tuple(image_size)
|
539 |
+
self.patch_size = to_2tuple(patch_size)
|
540 |
+
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
|
541 |
+
self.output_dim = output_dim
|
542 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
543 |
+
|
544 |
+
scale = width ** -0.5
|
545 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
546 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
547 |
+
|
548 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
549 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
550 |
+
self.ln_pre = norm_layer(width)
|
551 |
+
|
552 |
+
self.transformer = Transformer(
|
553 |
+
width,
|
554 |
+
layers,
|
555 |
+
heads,
|
556 |
+
mlp_ratio,
|
557 |
+
ls_init_value=ls_init_value,
|
558 |
+
act_layer=act_layer,
|
559 |
+
norm_layer=norm_layer,
|
560 |
+
xattn=xattn
|
561 |
+
)
|
562 |
+
|
563 |
+
self.global_average_pool = global_average_pool
|
564 |
+
self.ln_post = norm_layer(width)
|
565 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
566 |
+
|
567 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
568 |
+
for param in self.parameters():
|
569 |
+
param.requires_grad = False
|
570 |
+
|
571 |
+
if unlocked_groups != 0:
|
572 |
+
groups = [
|
573 |
+
[
|
574 |
+
self.conv1,
|
575 |
+
self.class_embedding,
|
576 |
+
self.positional_embedding,
|
577 |
+
self.ln_pre,
|
578 |
+
],
|
579 |
+
*self.transformer.resblocks[:-1],
|
580 |
+
[
|
581 |
+
self.transformer.resblocks[-1],
|
582 |
+
self.ln_post,
|
583 |
+
],
|
584 |
+
self.proj,
|
585 |
+
]
|
586 |
+
|
587 |
+
def _unlock(x):
|
588 |
+
if isinstance(x, Sequence):
|
589 |
+
for g in x:
|
590 |
+
_unlock(g)
|
591 |
+
else:
|
592 |
+
if isinstance(x, torch.nn.Parameter):
|
593 |
+
x.requires_grad = True
|
594 |
+
else:
|
595 |
+
for p in x.parameters():
|
596 |
+
p.requires_grad = True
|
597 |
+
|
598 |
+
_unlock(groups[-unlocked_groups:])
|
599 |
+
|
600 |
+
def get_num_layers(self):
|
601 |
+
return self.transformer.layers
|
602 |
+
|
603 |
+
@torch.jit.ignore
|
604 |
+
def set_grad_checkpointing(self, enable=True):
|
605 |
+
self.transformer.grad_checkpointing = enable
|
606 |
+
|
607 |
+
@torch.jit.ignore
|
608 |
+
def no_weight_decay(self):
|
609 |
+
return {'positional_embedding', 'class_embedding'}
|
610 |
+
|
611 |
+
def forward(self, x: torch.Tensor, return_all_features: bool=False):
|
612 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
613 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
614 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
615 |
+
x = torch.cat(
|
616 |
+
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
617 |
+
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
618 |
+
x = x + self.positional_embedding.to(x.dtype)
|
619 |
+
|
620 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
621 |
+
x = self.patch_dropout(x)
|
622 |
+
x = self.ln_pre(x)
|
623 |
+
|
624 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
625 |
+
x = self.transformer(x)
|
626 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
627 |
+
|
628 |
+
if not return_all_features:
|
629 |
+
if self.global_average_pool:
|
630 |
+
x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1)
|
631 |
+
else:
|
632 |
+
x = x[:, 0]
|
633 |
+
|
634 |
+
x = self.ln_post(x)
|
635 |
+
|
636 |
+
if self.proj is not None:
|
637 |
+
x = x @ self.proj
|
638 |
+
|
639 |
+
return x
|
640 |
+
|
641 |
+
|
642 |
+
class TextTransformer(nn.Module):
|
643 |
+
def __init__(
|
644 |
+
self,
|
645 |
+
context_length: int = 77,
|
646 |
+
vocab_size: int = 49408,
|
647 |
+
width: int = 512,
|
648 |
+
heads: int = 8,
|
649 |
+
layers: int = 12,
|
650 |
+
ls_init_value: float = None,
|
651 |
+
output_dim: int = 512,
|
652 |
+
act_layer: Callable = nn.GELU,
|
653 |
+
norm_layer: Callable = LayerNorm,
|
654 |
+
xattn: bool= False,
|
655 |
+
attn_mask: bool = True
|
656 |
+
):
|
657 |
+
super().__init__()
|
658 |
+
self.context_length = context_length
|
659 |
+
self.vocab_size = vocab_size
|
660 |
+
self.width = width
|
661 |
+
self.output_dim = output_dim
|
662 |
+
|
663 |
+
self.token_embedding = nn.Embedding(vocab_size, width)
|
664 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
|
665 |
+
self.transformer = Transformer(
|
666 |
+
width=width,
|
667 |
+
layers=layers,
|
668 |
+
heads=heads,
|
669 |
+
ls_init_value=ls_init_value,
|
670 |
+
act_layer=act_layer,
|
671 |
+
norm_layer=norm_layer,
|
672 |
+
xattn=xattn
|
673 |
+
)
|
674 |
+
|
675 |
+
self.xattn = xattn
|
676 |
+
self.ln_final = norm_layer(width)
|
677 |
+
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
678 |
+
|
679 |
+
if attn_mask:
|
680 |
+
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
|
681 |
+
else:
|
682 |
+
self.attn_mask = None
|
683 |
+
|
684 |
+
self.init_parameters()
|
685 |
+
|
686 |
+
def init_parameters(self):
|
687 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
688 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
689 |
+
|
690 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
691 |
+
attn_std = self.transformer.width ** -0.5
|
692 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
693 |
+
for block in self.transformer.resblocks:
|
694 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
695 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
696 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
697 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
698 |
+
|
699 |
+
if self.text_projection is not None:
|
700 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
701 |
+
|
702 |
+
@torch.jit.ignore
|
703 |
+
def set_grad_checkpointing(self, enable=True):
|
704 |
+
self.transformer.grad_checkpointing = enable
|
705 |
+
|
706 |
+
@torch.jit.ignore
|
707 |
+
def no_weight_decay(self):
|
708 |
+
# return {'positional_embedding', 'token_embedding'}
|
709 |
+
return {'positional_embedding'}
|
710 |
+
|
711 |
+
def get_num_layers(self):
|
712 |
+
return self.transformer.layers
|
713 |
+
|
714 |
+
def build_attention_mask(self):
|
715 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
716 |
+
# pytorch uses additive attention mask; fill with -inf
|
717 |
+
mask = torch.empty(self.context_length, self.context_length)
|
718 |
+
mask.fill_(float("-inf"))
|
719 |
+
mask.triu_(1) # zero out the lower diagonal
|
720 |
+
return mask
|
721 |
+
|
722 |
+
def forward(self, text, return_all_features: bool=False):
|
723 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
724 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
725 |
+
|
726 |
+
x = x + self.positional_embedding.to(cast_dtype)
|
727 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
728 |
+
x = self.transformer(x, attn_mask=self.attn_mask)
|
729 |
+
# x = self.transformer(x) # no attention mask is applied
|
730 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
731 |
+
x = self.ln_final(x)
|
732 |
+
|
733 |
+
if not return_all_features:
|
734 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
735 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
736 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
737 |
+
return x
|
PuLID_ComfyUI/eva_clip/utils.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import repeat
|
2 |
+
import collections.abc
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn as nn
|
9 |
+
from torchvision.ops.misc import FrozenBatchNorm2d
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
# open CLIP
|
13 |
+
def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
14 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
15 |
+
old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
16 |
+
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
17 |
+
return
|
18 |
+
grid_size = to_2tuple(model.visual.grid_size)
|
19 |
+
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
20 |
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
21 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
22 |
+
return
|
23 |
+
|
24 |
+
if extra_tokens:
|
25 |
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
26 |
+
else:
|
27 |
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
28 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
29 |
+
|
30 |
+
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
31 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
32 |
+
pos_emb_img = F.interpolate(
|
33 |
+
pos_emb_img,
|
34 |
+
size=grid_size,
|
35 |
+
mode=interpolation,
|
36 |
+
align_corners=True,
|
37 |
+
)
|
38 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
39 |
+
if pos_emb_tok is not None:
|
40 |
+
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
41 |
+
else:
|
42 |
+
new_pos_embed = pos_emb_img
|
43 |
+
state_dict['visual.positional_embedding'] = new_pos_embed
|
44 |
+
|
45 |
+
|
46 |
+
def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
47 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
48 |
+
old_pos_embed = state_dict.get('positional_embedding', None)
|
49 |
+
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
50 |
+
return
|
51 |
+
grid_size = to_2tuple(model.visual.grid_size)
|
52 |
+
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
53 |
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
54 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
55 |
+
return
|
56 |
+
|
57 |
+
if extra_tokens:
|
58 |
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
59 |
+
else:
|
60 |
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
61 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
62 |
+
|
63 |
+
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
64 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
65 |
+
pos_emb_img = F.interpolate(
|
66 |
+
pos_emb_img,
|
67 |
+
size=grid_size,
|
68 |
+
mode=interpolation,
|
69 |
+
align_corners=True,
|
70 |
+
)
|
71 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
72 |
+
if pos_emb_tok is not None:
|
73 |
+
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
74 |
+
else:
|
75 |
+
new_pos_embed = pos_emb_img
|
76 |
+
state_dict['positional_embedding'] = new_pos_embed
|
77 |
+
|
78 |
+
def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
79 |
+
all_keys = list(state_dict.keys())
|
80 |
+
# interpolate position embedding
|
81 |
+
if 'visual.pos_embed' in state_dict:
|
82 |
+
pos_embed_checkpoint = state_dict['visual.pos_embed']
|
83 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
84 |
+
num_patches = model.visual.patch_embed.num_patches
|
85 |
+
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
86 |
+
# height (== width) for the checkpoint position embedding
|
87 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
88 |
+
# height (== width) for the new position embedding
|
89 |
+
new_size = int(num_patches ** 0.5)
|
90 |
+
# class_token and dist_token are kept unchanged
|
91 |
+
if orig_size != new_size:
|
92 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
93 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
94 |
+
# only the position tokens are interpolated
|
95 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
96 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
97 |
+
pos_tokens = torch.nn.functional.interpolate(
|
98 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
99 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
100 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
101 |
+
state_dict['visual.pos_embed'] = new_pos_embed
|
102 |
+
|
103 |
+
patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
|
104 |
+
patch_size = model.visual.patch_embed.patch_size
|
105 |
+
state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
106 |
+
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
107 |
+
|
108 |
+
|
109 |
+
def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
110 |
+
all_keys = list(state_dict.keys())
|
111 |
+
# interpolate position embedding
|
112 |
+
if 'pos_embed' in state_dict:
|
113 |
+
pos_embed_checkpoint = state_dict['pos_embed']
|
114 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
115 |
+
num_patches = model.visual.patch_embed.num_patches
|
116 |
+
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
117 |
+
# height (== width) for the checkpoint position embedding
|
118 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
119 |
+
# height (== width) for the new position embedding
|
120 |
+
new_size = int(num_patches ** 0.5)
|
121 |
+
# class_token and dist_token are kept unchanged
|
122 |
+
if orig_size != new_size:
|
123 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
124 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
125 |
+
# only the position tokens are interpolated
|
126 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
127 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
128 |
+
pos_tokens = torch.nn.functional.interpolate(
|
129 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
130 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
131 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
132 |
+
state_dict['pos_embed'] = new_pos_embed
|
133 |
+
|
134 |
+
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
135 |
+
patch_size = model.visual.patch_embed.patch_size
|
136 |
+
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
137 |
+
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
138 |
+
|
139 |
+
|
140 |
+
def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
141 |
+
all_keys = list(state_dict.keys())
|
142 |
+
for key in all_keys:
|
143 |
+
if "relative_position_index" in key:
|
144 |
+
state_dict.pop(key)
|
145 |
+
|
146 |
+
if "relative_position_bias_table" in key:
|
147 |
+
rel_pos_bias = state_dict[key]
|
148 |
+
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
149 |
+
dst_num_pos, _ = model.visual.state_dict()[key].size()
|
150 |
+
dst_patch_shape = model.visual.patch_embed.patch_shape
|
151 |
+
if dst_patch_shape[0] != dst_patch_shape[1]:
|
152 |
+
raise NotImplementedError()
|
153 |
+
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
|
154 |
+
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
|
155 |
+
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
|
156 |
+
if src_size != dst_size:
|
157 |
+
print("Position interpolate for %s from %dx%d to %dx%d" % (
|
158 |
+
key, src_size, src_size, dst_size, dst_size))
|
159 |
+
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
160 |
+
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
161 |
+
|
162 |
+
def geometric_progression(a, r, n):
|
163 |
+
return a * (1.0 - r ** n) / (1.0 - r)
|
164 |
+
|
165 |
+
left, right = 1.01, 1.5
|
166 |
+
while right - left > 1e-6:
|
167 |
+
q = (left + right) / 2.0
|
168 |
+
gp = geometric_progression(1, q, src_size // 2)
|
169 |
+
if gp > dst_size // 2:
|
170 |
+
right = q
|
171 |
+
else:
|
172 |
+
left = q
|
173 |
+
|
174 |
+
# if q > 1.090307:
|
175 |
+
# q = 1.090307
|
176 |
+
|
177 |
+
dis = []
|
178 |
+
cur = 1
|
179 |
+
for i in range(src_size // 2):
|
180 |
+
dis.append(cur)
|
181 |
+
cur += q ** (i + 1)
|
182 |
+
|
183 |
+
r_ids = [-_ for _ in reversed(dis)]
|
184 |
+
|
185 |
+
x = r_ids + [0] + dis
|
186 |
+
y = r_ids + [0] + dis
|
187 |
+
|
188 |
+
t = dst_size // 2.0
|
189 |
+
dx = np.arange(-t, t + 0.1, 1.0)
|
190 |
+
dy = np.arange(-t, t + 0.1, 1.0)
|
191 |
+
|
192 |
+
print("Original positions = %s" % str(x))
|
193 |
+
print("Target positions = %s" % str(dx))
|
194 |
+
|
195 |
+
all_rel_pos_bias = []
|
196 |
+
|
197 |
+
for i in range(num_attn_heads):
|
198 |
+
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
199 |
+
f = F.interpolate.interp2d(x, y, z, kind='cubic')
|
200 |
+
all_rel_pos_bias.append(
|
201 |
+
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
202 |
+
|
203 |
+
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
204 |
+
|
205 |
+
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
206 |
+
state_dict[key] = new_rel_pos_bias
|
207 |
+
|
208 |
+
# interpolate position embedding
|
209 |
+
if 'pos_embed' in state_dict:
|
210 |
+
pos_embed_checkpoint = state_dict['pos_embed']
|
211 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
212 |
+
num_patches = model.visual.patch_embed.num_patches
|
213 |
+
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
214 |
+
# height (== width) for the checkpoint position embedding
|
215 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
216 |
+
# height (== width) for the new position embedding
|
217 |
+
new_size = int(num_patches ** 0.5)
|
218 |
+
# class_token and dist_token are kept unchanged
|
219 |
+
if orig_size != new_size:
|
220 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
221 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
222 |
+
# only the position tokens are interpolated
|
223 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
224 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
225 |
+
pos_tokens = torch.nn.functional.interpolate(
|
226 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
227 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
228 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
229 |
+
state_dict['pos_embed'] = new_pos_embed
|
230 |
+
|
231 |
+
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
232 |
+
patch_size = model.visual.patch_embed.patch_size
|
233 |
+
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
234 |
+
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
235 |
+
|
236 |
+
|
237 |
+
def freeze_batch_norm_2d(module, module_match={}, name=''):
|
238 |
+
"""
|
239 |
+
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
|
240 |
+
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
|
241 |
+
returned. Otherwise, the module is walked recursively and submodules are converted in place.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
module (torch.nn.Module): Any PyTorch module.
|
245 |
+
module_match (dict): Dictionary of full module names to freeze (all if empty)
|
246 |
+
name (str): Full module name (prefix)
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
torch.nn.Module: Resulting module
|
250 |
+
|
251 |
+
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
|
252 |
+
"""
|
253 |
+
res = module
|
254 |
+
is_match = True
|
255 |
+
if module_match:
|
256 |
+
is_match = name in module_match
|
257 |
+
if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
|
258 |
+
res = FrozenBatchNorm2d(module.num_features)
|
259 |
+
res.num_features = module.num_features
|
260 |
+
res.affine = module.affine
|
261 |
+
if module.affine:
|
262 |
+
res.weight.data = module.weight.data.clone().detach()
|
263 |
+
res.bias.data = module.bias.data.clone().detach()
|
264 |
+
res.running_mean.data = module.running_mean.data
|
265 |
+
res.running_var.data = module.running_var.data
|
266 |
+
res.eps = module.eps
|
267 |
+
else:
|
268 |
+
for child_name, child in module.named_children():
|
269 |
+
full_child_name = '.'.join([name, child_name]) if name else child_name
|
270 |
+
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
|
271 |
+
if new_child is not child:
|
272 |
+
res.add_module(child_name, new_child)
|
273 |
+
return res
|
274 |
+
|
275 |
+
|
276 |
+
# From PyTorch internals
|
277 |
+
def _ntuple(n):
|
278 |
+
def parse(x):
|
279 |
+
if isinstance(x, collections.abc.Iterable):
|
280 |
+
return x
|
281 |
+
return tuple(repeat(x, n))
|
282 |
+
return parse
|
283 |
+
|
284 |
+
|
285 |
+
to_1tuple = _ntuple(1)
|
286 |
+
to_2tuple = _ntuple(2)
|
287 |
+
to_3tuple = _ntuple(3)
|
288 |
+
to_4tuple = _ntuple(4)
|
289 |
+
to_ntuple = lambda n, x: _ntuple(n)(x)
|
290 |
+
|
291 |
+
|
292 |
+
def is_logging(args):
|
293 |
+
def is_global_master(args):
|
294 |
+
return args.rank == 0
|
295 |
+
|
296 |
+
def is_local_master(args):
|
297 |
+
return args.local_rank == 0
|
298 |
+
|
299 |
+
def is_master(args, local=False):
|
300 |
+
return is_local_master(args) if local else is_global_master(args)
|
301 |
+
return is_master
|
302 |
+
|
303 |
+
|
304 |
+
class AllGather(torch.autograd.Function):
|
305 |
+
"""An autograd function that performs allgather on a tensor.
|
306 |
+
Performs all_gather operation on the provided tensors.
|
307 |
+
*** Warning ***: torch.distributed.all_gather has no gradient.
|
308 |
+
"""
|
309 |
+
|
310 |
+
@staticmethod
|
311 |
+
def forward(ctx, tensor, rank, world_size):
|
312 |
+
tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
|
313 |
+
torch.distributed.all_gather(tensors_gather, tensor)
|
314 |
+
ctx.rank = rank
|
315 |
+
ctx.batch_size = tensor.shape[0]
|
316 |
+
return torch.cat(tensors_gather, 0)
|
317 |
+
|
318 |
+
@staticmethod
|
319 |
+
def backward(ctx, grad_output):
|
320 |
+
return (
|
321 |
+
grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
|
322 |
+
None,
|
323 |
+
None
|
324 |
+
)
|
325 |
+
|
326 |
+
allgather = AllGather.apply
|
PuLID_ComfyUI/examples/PuLID_4-Step_lightning.json
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 43,
|
3 |
+
"last_link_id": 128,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 8,
|
7 |
+
"type": "VAEDecode",
|
8 |
+
"pos": [
|
9 |
+
1210,
|
10 |
+
-270
|
11 |
+
],
|
12 |
+
"size": {
|
13 |
+
"0": 140,
|
14 |
+
"1": 46
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 11,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "samples",
|
22 |
+
"type": "LATENT",
|
23 |
+
"link": 7
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"name": "vae",
|
27 |
+
"type": "VAE",
|
28 |
+
"link": 8
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"name": "IMAGE",
|
34 |
+
"type": "IMAGE",
|
35 |
+
"links": [
|
36 |
+
10
|
37 |
+
],
|
38 |
+
"slot_index": 0
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"properties": {
|
42 |
+
"Node name for S&R": "VAEDecode"
|
43 |
+
}
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"id": 19,
|
47 |
+
"type": "PulidEvaClipLoader",
|
48 |
+
"pos": [
|
49 |
+
130,
|
50 |
+
120
|
51 |
+
],
|
52 |
+
"size": {
|
53 |
+
"0": 140,
|
54 |
+
"1": 26
|
55 |
+
},
|
56 |
+
"flags": {},
|
57 |
+
"order": 0,
|
58 |
+
"mode": 0,
|
59 |
+
"outputs": [
|
60 |
+
{
|
61 |
+
"name": "EVA_CLIP",
|
62 |
+
"type": "EVA_CLIP",
|
63 |
+
"links": [
|
64 |
+
81
|
65 |
+
],
|
66 |
+
"shape": 3,
|
67 |
+
"slot_index": 0
|
68 |
+
}
|
69 |
+
],
|
70 |
+
"properties": {
|
71 |
+
"Node name for S&R": "PulidEvaClipLoader"
|
72 |
+
}
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"id": 17,
|
76 |
+
"type": "PulidInsightFaceLoader",
|
77 |
+
"pos": [
|
78 |
+
60,
|
79 |
+
190
|
80 |
+
],
|
81 |
+
"size": {
|
82 |
+
"0": 210,
|
83 |
+
"1": 58
|
84 |
+
},
|
85 |
+
"flags": {},
|
86 |
+
"order": 1,
|
87 |
+
"mode": 0,
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"name": "FACEANALYSIS",
|
91 |
+
"type": "FACEANALYSIS",
|
92 |
+
"links": [
|
93 |
+
82
|
94 |
+
],
|
95 |
+
"shape": 3,
|
96 |
+
"slot_index": 0
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"properties": {
|
100 |
+
"Node name for S&R": "PulidInsightFaceLoader"
|
101 |
+
},
|
102 |
+
"widgets_values": [
|
103 |
+
"CPU"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"id": 23,
|
108 |
+
"type": "CLIPTextEncode",
|
109 |
+
"pos": [
|
110 |
+
330,
|
111 |
+
-260
|
112 |
+
],
|
113 |
+
"size": {
|
114 |
+
"0": 334.8077697753906,
|
115 |
+
"1": 189.35675048828125
|
116 |
+
},
|
117 |
+
"flags": {},
|
118 |
+
"order": 8,
|
119 |
+
"mode": 0,
|
120 |
+
"inputs": [
|
121 |
+
{
|
122 |
+
"name": "clip",
|
123 |
+
"type": "CLIP",
|
124 |
+
"link": 94
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"outputs": [
|
128 |
+
{
|
129 |
+
"name": "CONDITIONING",
|
130 |
+
"type": "CONDITIONING",
|
131 |
+
"links": [
|
132 |
+
34
|
133 |
+
],
|
134 |
+
"shape": 3,
|
135 |
+
"slot_index": 0
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"properties": {
|
139 |
+
"Node name for S&R": "CLIPTextEncode"
|
140 |
+
},
|
141 |
+
"widgets_values": [
|
142 |
+
"flaws in the eyes, flaws in the face, flaws, lowres, non-HDRi, low quality, worst quality,artifacts noise, text, watermark, glitch, deformed, mutated, ugly, disfigured, hands, low resolution, partially rendered objects, deformed or partially rendered eyes, deformed, deformed eyeballs, cross-eyed,blurry"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"id": 22,
|
147 |
+
"type": "CLIPTextEncode",
|
148 |
+
"pos": [
|
149 |
+
340,
|
150 |
+
-430
|
151 |
+
],
|
152 |
+
"size": {
|
153 |
+
"0": 315.23089599609375,
|
154 |
+
"1": 113.96450805664062
|
155 |
+
},
|
156 |
+
"flags": {},
|
157 |
+
"order": 7,
|
158 |
+
"mode": 0,
|
159 |
+
"inputs": [
|
160 |
+
{
|
161 |
+
"name": "clip",
|
162 |
+
"type": "CLIP",
|
163 |
+
"link": 93
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"outputs": [
|
167 |
+
{
|
168 |
+
"name": "CONDITIONING",
|
169 |
+
"type": "CONDITIONING",
|
170 |
+
"links": [
|
171 |
+
35
|
172 |
+
],
|
173 |
+
"shape": 3,
|
174 |
+
"slot_index": 0
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"properties": {
|
178 |
+
"Node name for S&R": "CLIPTextEncode"
|
179 |
+
},
|
180 |
+
"widgets_values": [
|
181 |
+
"portrait,cinematic,wolf ears,white hair"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"id": 10,
|
186 |
+
"type": "PreviewImage",
|
187 |
+
"pos": [
|
188 |
+
1230,
|
189 |
+
-160
|
190 |
+
],
|
191 |
+
"size": [
|
192 |
+
855.3022058439137,
|
193 |
+
1107.2183523542942
|
194 |
+
],
|
195 |
+
"flags": {},
|
196 |
+
"order": 12,
|
197 |
+
"mode": 0,
|
198 |
+
"inputs": [
|
199 |
+
{
|
200 |
+
"name": "images",
|
201 |
+
"type": "IMAGE",
|
202 |
+
"link": 10
|
203 |
+
}
|
204 |
+
],
|
205 |
+
"properties": {
|
206 |
+
"Node name for S&R": "PreviewImage"
|
207 |
+
}
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"id": 12,
|
211 |
+
"type": "LoadImage",
|
212 |
+
"pos": [
|
213 |
+
-117,
|
214 |
+
336
|
215 |
+
],
|
216 |
+
"size": {
|
217 |
+
"0": 404.07366943359375,
|
218 |
+
"1": 496.2817077636719
|
219 |
+
},
|
220 |
+
"flags": {},
|
221 |
+
"order": 2,
|
222 |
+
"mode": 0,
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"name": "IMAGE",
|
226 |
+
"type": "IMAGE",
|
227 |
+
"links": [
|
228 |
+
114
|
229 |
+
],
|
230 |
+
"shape": 3,
|
231 |
+
"slot_index": 0
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"name": "MASK",
|
235 |
+
"type": "MASK",
|
236 |
+
"links": null,
|
237 |
+
"shape": 3
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"properties": {
|
241 |
+
"Node name for S&R": "LoadImage"
|
242 |
+
},
|
243 |
+
"widgets_values": [
|
244 |
+
"monalisa.png",
|
245 |
+
"image"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"id": 5,
|
250 |
+
"type": "EmptyLatentImage",
|
251 |
+
"pos": [
|
252 |
+
353,
|
253 |
+
286
|
254 |
+
],
|
255 |
+
"size": {
|
256 |
+
"0": 315,
|
257 |
+
"1": 106
|
258 |
+
},
|
259 |
+
"flags": {},
|
260 |
+
"order": 3,
|
261 |
+
"mode": 0,
|
262 |
+
"outputs": [
|
263 |
+
{
|
264 |
+
"name": "LATENT",
|
265 |
+
"type": "LATENT",
|
266 |
+
"links": [
|
267 |
+
2
|
268 |
+
],
|
269 |
+
"slot_index": 0
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"properties": {
|
273 |
+
"Node name for S&R": "EmptyLatentImage"
|
274 |
+
},
|
275 |
+
"widgets_values": [
|
276 |
+
768,
|
277 |
+
1024,
|
278 |
+
1
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"id": 16,
|
283 |
+
"type": "PulidModelLoader",
|
284 |
+
"pos": [
|
285 |
+
-20,
|
286 |
+
20
|
287 |
+
],
|
288 |
+
"size": {
|
289 |
+
"0": 304.0072021484375,
|
290 |
+
"1": 58
|
291 |
+
},
|
292 |
+
"flags": {},
|
293 |
+
"order": 4,
|
294 |
+
"mode": 0,
|
295 |
+
"outputs": [
|
296 |
+
{
|
297 |
+
"name": "PULID",
|
298 |
+
"type": "PULID",
|
299 |
+
"links": [
|
300 |
+
117
|
301 |
+
],
|
302 |
+
"shape": 3,
|
303 |
+
"slot_index": 0
|
304 |
+
}
|
305 |
+
],
|
306 |
+
"properties": {
|
307 |
+
"Node name for S&R": "PulidModelLoader"
|
308 |
+
},
|
309 |
+
"widgets_values": [
|
310 |
+
"ip-adapter_pulid_sdxl_fp16.safetensors"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"id": 4,
|
315 |
+
"type": "CheckpointLoaderSimple",
|
316 |
+
"pos": [
|
317 |
+
-130,
|
318 |
+
-350
|
319 |
+
],
|
320 |
+
"size": {
|
321 |
+
"0": 319.03692626953125,
|
322 |
+
"1": 101.3391342163086
|
323 |
+
},
|
324 |
+
"flags": {},
|
325 |
+
"order": 5,
|
326 |
+
"mode": 0,
|
327 |
+
"outputs": [
|
328 |
+
{
|
329 |
+
"name": "MODEL",
|
330 |
+
"type": "MODEL",
|
331 |
+
"links": [],
|
332 |
+
"slot_index": 0
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"name": "CLIP",
|
336 |
+
"type": "CLIP",
|
337 |
+
"links": [
|
338 |
+
93,
|
339 |
+
94
|
340 |
+
],
|
341 |
+
"slot_index": 1
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"name": "VAE",
|
345 |
+
"type": "VAE",
|
346 |
+
"links": [
|
347 |
+
8
|
348 |
+
],
|
349 |
+
"slot_index": 2
|
350 |
+
}
|
351 |
+
],
|
352 |
+
"properties": {
|
353 |
+
"Node name for S&R": "CheckpointLoaderSimple"
|
354 |
+
},
|
355 |
+
"widgets_values": [
|
356 |
+
"sdxl/sd_xl_base_1.0_0.9vae.safetensors"
|
357 |
+
]
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"id": 41,
|
361 |
+
"type": "UNETLoader",
|
362 |
+
"pos": [
|
363 |
+
-130,
|
364 |
+
-193
|
365 |
+
],
|
366 |
+
"size": {
|
367 |
+
"0": 315,
|
368 |
+
"1": 58
|
369 |
+
},
|
370 |
+
"flags": {},
|
371 |
+
"order": 6,
|
372 |
+
"mode": 0,
|
373 |
+
"outputs": [
|
374 |
+
{
|
375 |
+
"name": "MODEL",
|
376 |
+
"type": "MODEL",
|
377 |
+
"links": [
|
378 |
+
128
|
379 |
+
],
|
380 |
+
"shape": 3,
|
381 |
+
"slot_index": 0
|
382 |
+
}
|
383 |
+
],
|
384 |
+
"properties": {
|
385 |
+
"Node name for S&R": "UNETLoader"
|
386 |
+
},
|
387 |
+
"widgets_values": [
|
388 |
+
"sdxl_lightning_4step_unet.safetensors"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"id": 33,
|
393 |
+
"type": "ApplyPulid",
|
394 |
+
"pos": [
|
395 |
+
350,
|
396 |
+
-10
|
397 |
+
],
|
398 |
+
"size": {
|
399 |
+
"0": 315,
|
400 |
+
"1": 210
|
401 |
+
},
|
402 |
+
"flags": {},
|
403 |
+
"order": 9,
|
404 |
+
"mode": 0,
|
405 |
+
"inputs": [
|
406 |
+
{
|
407 |
+
"name": "model",
|
408 |
+
"type": "MODEL",
|
409 |
+
"link": 128
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"name": "pulid",
|
413 |
+
"type": "PULID",
|
414 |
+
"link": 117
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"name": "eva_clip",
|
418 |
+
"type": "EVA_CLIP",
|
419 |
+
"link": 81
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"name": "face_analysis",
|
423 |
+
"type": "FACEANALYSIS",
|
424 |
+
"link": 82
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"name": "image",
|
428 |
+
"type": "IMAGE",
|
429 |
+
"link": 114
|
430 |
+
}
|
431 |
+
],
|
432 |
+
"outputs": [
|
433 |
+
{
|
434 |
+
"name": "MODEL",
|
435 |
+
"type": "MODEL",
|
436 |
+
"links": [
|
437 |
+
120
|
438 |
+
],
|
439 |
+
"shape": 3,
|
440 |
+
"slot_index": 0
|
441 |
+
}
|
442 |
+
],
|
443 |
+
"properties": {
|
444 |
+
"Node name for S&R": "ApplyPulid"
|
445 |
+
},
|
446 |
+
"widgets_values": [
|
447 |
+
"fidelity",
|
448 |
+
0.8,
|
449 |
+
0,
|
450 |
+
1
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"id": 3,
|
455 |
+
"type": "KSampler",
|
456 |
+
"pos": [
|
457 |
+
800,
|
458 |
+
-270
|
459 |
+
],
|
460 |
+
"size": {
|
461 |
+
"0": 341.2750244140625,
|
462 |
+
"1": 262
|
463 |
+
},
|
464 |
+
"flags": {},
|
465 |
+
"order": 10,
|
466 |
+
"mode": 0,
|
467 |
+
"inputs": [
|
468 |
+
{
|
469 |
+
"name": "model",
|
470 |
+
"type": "MODEL",
|
471 |
+
"link": 120
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"name": "positive",
|
475 |
+
"type": "CONDITIONING",
|
476 |
+
"link": 35
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"name": "negative",
|
480 |
+
"type": "CONDITIONING",
|
481 |
+
"link": 34
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"name": "latent_image",
|
485 |
+
"type": "LATENT",
|
486 |
+
"link": 2
|
487 |
+
}
|
488 |
+
],
|
489 |
+
"outputs": [
|
490 |
+
{
|
491 |
+
"name": "LATENT",
|
492 |
+
"type": "LATENT",
|
493 |
+
"links": [
|
494 |
+
7
|
495 |
+
],
|
496 |
+
"slot_index": 0
|
497 |
+
}
|
498 |
+
],
|
499 |
+
"properties": {
|
500 |
+
"Node name for S&R": "KSampler"
|
501 |
+
},
|
502 |
+
"widgets_values": [
|
503 |
+
42,
|
504 |
+
"fixed",
|
505 |
+
4,
|
506 |
+
1.2,
|
507 |
+
"dpmpp_2m",
|
508 |
+
"sgm_uniform",
|
509 |
+
1
|
510 |
+
]
|
511 |
+
}
|
512 |
+
],
|
513 |
+
"links": [
|
514 |
+
[
|
515 |
+
2,
|
516 |
+
5,
|
517 |
+
0,
|
518 |
+
3,
|
519 |
+
3,
|
520 |
+
"LATENT"
|
521 |
+
],
|
522 |
+
[
|
523 |
+
7,
|
524 |
+
3,
|
525 |
+
0,
|
526 |
+
8,
|
527 |
+
0,
|
528 |
+
"LATENT"
|
529 |
+
],
|
530 |
+
[
|
531 |
+
8,
|
532 |
+
4,
|
533 |
+
2,
|
534 |
+
8,
|
535 |
+
1,
|
536 |
+
"VAE"
|
537 |
+
],
|
538 |
+
[
|
539 |
+
10,
|
540 |
+
8,
|
541 |
+
0,
|
542 |
+
10,
|
543 |
+
0,
|
544 |
+
"IMAGE"
|
545 |
+
],
|
546 |
+
[
|
547 |
+
34,
|
548 |
+
23,
|
549 |
+
0,
|
550 |
+
3,
|
551 |
+
2,
|
552 |
+
"CONDITIONING"
|
553 |
+
],
|
554 |
+
[
|
555 |
+
35,
|
556 |
+
22,
|
557 |
+
0,
|
558 |
+
3,
|
559 |
+
1,
|
560 |
+
"CONDITIONING"
|
561 |
+
],
|
562 |
+
[
|
563 |
+
81,
|
564 |
+
19,
|
565 |
+
0,
|
566 |
+
33,
|
567 |
+
2,
|
568 |
+
"EVA_CLIP"
|
569 |
+
],
|
570 |
+
[
|
571 |
+
82,
|
572 |
+
17,
|
573 |
+
0,
|
574 |
+
33,
|
575 |
+
3,
|
576 |
+
"FACEANALYSIS"
|
577 |
+
],
|
578 |
+
[
|
579 |
+
93,
|
580 |
+
4,
|
581 |
+
1,
|
582 |
+
22,
|
583 |
+
0,
|
584 |
+
"CLIP"
|
585 |
+
],
|
586 |
+
[
|
587 |
+
94,
|
588 |
+
4,
|
589 |
+
1,
|
590 |
+
23,
|
591 |
+
0,
|
592 |
+
"CLIP"
|
593 |
+
],
|
594 |
+
[
|
595 |
+
114,
|
596 |
+
12,
|
597 |
+
0,
|
598 |
+
33,
|
599 |
+
4,
|
600 |
+
"IMAGE"
|
601 |
+
],
|
602 |
+
[
|
603 |
+
117,
|
604 |
+
16,
|
605 |
+
0,
|
606 |
+
33,
|
607 |
+
1,
|
608 |
+
"PULID"
|
609 |
+
],
|
610 |
+
[
|
611 |
+
120,
|
612 |
+
33,
|
613 |
+
0,
|
614 |
+
3,
|
615 |
+
0,
|
616 |
+
"MODEL"
|
617 |
+
],
|
618 |
+
[
|
619 |
+
128,
|
620 |
+
41,
|
621 |
+
0,
|
622 |
+
33,
|
623 |
+
0,
|
624 |
+
"MODEL"
|
625 |
+
]
|
626 |
+
],
|
627 |
+
"groups": [],
|
628 |
+
"config": {},
|
629 |
+
"extra": {},
|
630 |
+
"version": 0.4
|
631 |
+
}
|
PuLID_ComfyUI/examples/PuLID_IPAdapter_style_transfer.json
ADDED
@@ -0,0 +1,794 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 48,
|
3 |
+
"last_link_id": 139,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 19,
|
7 |
+
"type": "PulidEvaClipLoader",
|
8 |
+
"pos": [
|
9 |
+
130,
|
10 |
+
120
|
11 |
+
],
|
12 |
+
"size": {
|
13 |
+
"0": 140,
|
14 |
+
"1": 26
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 0,
|
18 |
+
"mode": 0,
|
19 |
+
"outputs": [
|
20 |
+
{
|
21 |
+
"name": "EVA_CLIP",
|
22 |
+
"type": "EVA_CLIP",
|
23 |
+
"links": [
|
24 |
+
81
|
25 |
+
],
|
26 |
+
"shape": 3,
|
27 |
+
"slot_index": 0
|
28 |
+
}
|
29 |
+
],
|
30 |
+
"properties": {
|
31 |
+
"Node name for S&R": "PulidEvaClipLoader"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"id": 17,
|
36 |
+
"type": "PulidInsightFaceLoader",
|
37 |
+
"pos": [
|
38 |
+
60,
|
39 |
+
190
|
40 |
+
],
|
41 |
+
"size": {
|
42 |
+
"0": 210,
|
43 |
+
"1": 58
|
44 |
+
},
|
45 |
+
"flags": {},
|
46 |
+
"order": 1,
|
47 |
+
"mode": 0,
|
48 |
+
"outputs": [
|
49 |
+
{
|
50 |
+
"name": "FACEANALYSIS",
|
51 |
+
"type": "FACEANALYSIS",
|
52 |
+
"links": [
|
53 |
+
82
|
54 |
+
],
|
55 |
+
"shape": 3,
|
56 |
+
"slot_index": 0
|
57 |
+
}
|
58 |
+
],
|
59 |
+
"properties": {
|
60 |
+
"Node name for S&R": "PulidInsightFaceLoader"
|
61 |
+
},
|
62 |
+
"widgets_values": [
|
63 |
+
"CPU"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"id": 16,
|
68 |
+
"type": "PulidModelLoader",
|
69 |
+
"pos": [
|
70 |
+
-20,
|
71 |
+
20
|
72 |
+
],
|
73 |
+
"size": {
|
74 |
+
"0": 304.0072021484375,
|
75 |
+
"1": 58
|
76 |
+
},
|
77 |
+
"flags": {},
|
78 |
+
"order": 2,
|
79 |
+
"mode": 0,
|
80 |
+
"outputs": [
|
81 |
+
{
|
82 |
+
"name": "PULID",
|
83 |
+
"type": "PULID",
|
84 |
+
"links": [
|
85 |
+
117
|
86 |
+
],
|
87 |
+
"shape": 3,
|
88 |
+
"slot_index": 0
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"properties": {
|
92 |
+
"Node name for S&R": "PulidModelLoader"
|
93 |
+
},
|
94 |
+
"widgets_values": [
|
95 |
+
"ip-adapter_pulid_sdxl_fp16.safetensors"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"id": 5,
|
100 |
+
"type": "EmptyLatentImage",
|
101 |
+
"pos": [
|
102 |
+
350,
|
103 |
+
265
|
104 |
+
],
|
105 |
+
"size": {
|
106 |
+
"0": 315,
|
107 |
+
"1": 106
|
108 |
+
},
|
109 |
+
"flags": {},
|
110 |
+
"order": 3,
|
111 |
+
"mode": 0,
|
112 |
+
"outputs": [
|
113 |
+
{
|
114 |
+
"name": "LATENT",
|
115 |
+
"type": "LATENT",
|
116 |
+
"links": [
|
117 |
+
2
|
118 |
+
],
|
119 |
+
"slot_index": 0
|
120 |
+
}
|
121 |
+
],
|
122 |
+
"properties": {
|
123 |
+
"Node name for S&R": "EmptyLatentImage"
|
124 |
+
},
|
125 |
+
"widgets_values": [
|
126 |
+
768,
|
127 |
+
1024,
|
128 |
+
1
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"id": 23,
|
133 |
+
"type": "CLIPTextEncode",
|
134 |
+
"pos": [
|
135 |
+
330,
|
136 |
+
-260
|
137 |
+
],
|
138 |
+
"size": {
|
139 |
+
"0": 334.8077697753906,
|
140 |
+
"1": 189.35675048828125
|
141 |
+
},
|
142 |
+
"flags": {},
|
143 |
+
"order": 9,
|
144 |
+
"mode": 0,
|
145 |
+
"inputs": [
|
146 |
+
{
|
147 |
+
"name": "clip",
|
148 |
+
"type": "CLIP",
|
149 |
+
"link": 94
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"outputs": [
|
153 |
+
{
|
154 |
+
"name": "CONDITIONING",
|
155 |
+
"type": "CONDITIONING",
|
156 |
+
"links": [
|
157 |
+
34
|
158 |
+
],
|
159 |
+
"shape": 3,
|
160 |
+
"slot_index": 0
|
161 |
+
}
|
162 |
+
],
|
163 |
+
"properties": {
|
164 |
+
"Node name for S&R": "CLIPTextEncode"
|
165 |
+
},
|
166 |
+
"widgets_values": [
|
167 |
+
"blurry, malformed, low quality, worst quality, artifacts, noise, text, watermark, glitch, deformed, ugly, horror, ill"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"id": 22,
|
172 |
+
"type": "CLIPTextEncode",
|
173 |
+
"pos": [
|
174 |
+
340,
|
175 |
+
-430
|
176 |
+
],
|
177 |
+
"size": {
|
178 |
+
"0": 315.23089599609375,
|
179 |
+
"1": 113.96450805664062
|
180 |
+
},
|
181 |
+
"flags": {},
|
182 |
+
"order": 8,
|
183 |
+
"mode": 0,
|
184 |
+
"inputs": [
|
185 |
+
{
|
186 |
+
"name": "clip",
|
187 |
+
"type": "CLIP",
|
188 |
+
"link": 93
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"outputs": [
|
192 |
+
{
|
193 |
+
"name": "CONDITIONING",
|
194 |
+
"type": "CONDITIONING",
|
195 |
+
"links": [
|
196 |
+
35
|
197 |
+
],
|
198 |
+
"shape": 3,
|
199 |
+
"slot_index": 0
|
200 |
+
}
|
201 |
+
],
|
202 |
+
"properties": {
|
203 |
+
"Node name for S&R": "CLIPTextEncode"
|
204 |
+
},
|
205 |
+
"widgets_values": [
|
206 |
+
"closeup portrait, cyberpunk, cinematic, hoodie, purple hair, highly detailed, 4k, high resolution"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"id": 12,
|
211 |
+
"type": "LoadImage",
|
212 |
+
"pos": [
|
213 |
+
-115,
|
214 |
+
310
|
215 |
+
],
|
216 |
+
"size": {
|
217 |
+
"0": 404.07366943359375,
|
218 |
+
"1": 496.2817077636719
|
219 |
+
},
|
220 |
+
"flags": {},
|
221 |
+
"order": 4,
|
222 |
+
"mode": 0,
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"name": "IMAGE",
|
226 |
+
"type": "IMAGE",
|
227 |
+
"links": [
|
228 |
+
114
|
229 |
+
],
|
230 |
+
"shape": 3,
|
231 |
+
"slot_index": 0
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"name": "MASK",
|
235 |
+
"type": "MASK",
|
236 |
+
"links": null,
|
237 |
+
"shape": 3
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"properties": {
|
241 |
+
"Node name for S&R": "LoadImage"
|
242 |
+
},
|
243 |
+
"widgets_values": [
|
244 |
+
"monalisa.png",
|
245 |
+
"image"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"id": 4,
|
250 |
+
"type": "CheckpointLoaderSimple",
|
251 |
+
"pos": [
|
252 |
+
-97,
|
253 |
+
-265
|
254 |
+
],
|
255 |
+
"size": {
|
256 |
+
"0": 319.03692626953125,
|
257 |
+
"1": 101.3391342163086
|
258 |
+
},
|
259 |
+
"flags": {},
|
260 |
+
"order": 5,
|
261 |
+
"mode": 0,
|
262 |
+
"outputs": [
|
263 |
+
{
|
264 |
+
"name": "MODEL",
|
265 |
+
"type": "MODEL",
|
266 |
+
"links": [
|
267 |
+
133
|
268 |
+
],
|
269 |
+
"slot_index": 0
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"name": "CLIP",
|
273 |
+
"type": "CLIP",
|
274 |
+
"links": [
|
275 |
+
93,
|
276 |
+
94
|
277 |
+
],
|
278 |
+
"slot_index": 1
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"name": "VAE",
|
282 |
+
"type": "VAE",
|
283 |
+
"links": [
|
284 |
+
8
|
285 |
+
],
|
286 |
+
"slot_index": 2
|
287 |
+
}
|
288 |
+
],
|
289 |
+
"properties": {
|
290 |
+
"Node name for S&R": "CheckpointLoaderSimple"
|
291 |
+
},
|
292 |
+
"widgets_values": [
|
293 |
+
"sdxl/Proteus-RunDiffusion.safetensors"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"id": 33,
|
298 |
+
"type": "ApplyPulid",
|
299 |
+
"pos": [
|
300 |
+
350,
|
301 |
+
-10
|
302 |
+
],
|
303 |
+
"size": {
|
304 |
+
"0": 315,
|
305 |
+
"1": 210
|
306 |
+
},
|
307 |
+
"flags": {},
|
308 |
+
"order": 7,
|
309 |
+
"mode": 0,
|
310 |
+
"inputs": [
|
311 |
+
{
|
312 |
+
"name": "model",
|
313 |
+
"type": "MODEL",
|
314 |
+
"link": 133
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"name": "pulid",
|
318 |
+
"type": "PULID",
|
319 |
+
"link": 117
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"name": "eva_clip",
|
323 |
+
"type": "EVA_CLIP",
|
324 |
+
"link": 81
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"name": "face_analysis",
|
328 |
+
"type": "FACEANALYSIS",
|
329 |
+
"link": 82
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"name": "image",
|
333 |
+
"type": "IMAGE",
|
334 |
+
"link": 114
|
335 |
+
}
|
336 |
+
],
|
337 |
+
"outputs": [
|
338 |
+
{
|
339 |
+
"name": "MODEL",
|
340 |
+
"type": "MODEL",
|
341 |
+
"links": [
|
342 |
+
136
|
343 |
+
],
|
344 |
+
"shape": 3,
|
345 |
+
"slot_index": 0
|
346 |
+
}
|
347 |
+
],
|
348 |
+
"properties": {
|
349 |
+
"Node name for S&R": "ApplyPulid"
|
350 |
+
},
|
351 |
+
"widgets_values": [
|
352 |
+
"fidelity",
|
353 |
+
0.8,
|
354 |
+
0,
|
355 |
+
1
|
356 |
+
]
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"id": 47,
|
360 |
+
"type": "IPAdapterUnifiedLoader",
|
361 |
+
"pos": [
|
362 |
+
720,
|
363 |
+
-10
|
364 |
+
],
|
365 |
+
"size": [
|
366 |
+
245.09423828124943,
|
367 |
+
78
|
368 |
+
],
|
369 |
+
"flags": {},
|
370 |
+
"order": 10,
|
371 |
+
"mode": 0,
|
372 |
+
"inputs": [
|
373 |
+
{
|
374 |
+
"name": "model",
|
375 |
+
"type": "MODEL",
|
376 |
+
"link": 136
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"name": "ipadapter",
|
380 |
+
"type": "IPADAPTER",
|
381 |
+
"link": null
|
382 |
+
}
|
383 |
+
],
|
384 |
+
"outputs": [
|
385 |
+
{
|
386 |
+
"name": "model",
|
387 |
+
"type": "MODEL",
|
388 |
+
"links": [
|
389 |
+
137
|
390 |
+
],
|
391 |
+
"shape": 3,
|
392 |
+
"slot_index": 0
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"name": "ipadapter",
|
396 |
+
"type": "IPADAPTER",
|
397 |
+
"links": [
|
398 |
+
135
|
399 |
+
],
|
400 |
+
"shape": 3
|
401 |
+
}
|
402 |
+
],
|
403 |
+
"properties": {
|
404 |
+
"Node name for S&R": "IPAdapterUnifiedLoader"
|
405 |
+
},
|
406 |
+
"widgets_values": [
|
407 |
+
"PLUS (high strength)"
|
408 |
+
]
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"id": 8,
|
412 |
+
"type": "VAEDecode",
|
413 |
+
"pos": [
|
414 |
+
1831,
|
415 |
+
16
|
416 |
+
],
|
417 |
+
"size": {
|
418 |
+
"0": 140,
|
419 |
+
"1": 46
|
420 |
+
},
|
421 |
+
"flags": {},
|
422 |
+
"order": 13,
|
423 |
+
"mode": 0,
|
424 |
+
"inputs": [
|
425 |
+
{
|
426 |
+
"name": "samples",
|
427 |
+
"type": "LATENT",
|
428 |
+
"link": 7
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"name": "vae",
|
432 |
+
"type": "VAE",
|
433 |
+
"link": 8
|
434 |
+
}
|
435 |
+
],
|
436 |
+
"outputs": [
|
437 |
+
{
|
438 |
+
"name": "IMAGE",
|
439 |
+
"type": "IMAGE",
|
440 |
+
"links": [
|
441 |
+
10
|
442 |
+
],
|
443 |
+
"slot_index": 0
|
444 |
+
}
|
445 |
+
],
|
446 |
+
"properties": {
|
447 |
+
"Node name for S&R": "VAEDecode"
|
448 |
+
}
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"id": 10,
|
452 |
+
"type": "PreviewImage",
|
453 |
+
"pos": [
|
454 |
+
1817,
|
455 |
+
123
|
456 |
+
],
|
457 |
+
"size": [
|
458 |
+
705.6038401281248,
|
459 |
+
950.4616015812499
|
460 |
+
],
|
461 |
+
"flags": {},
|
462 |
+
"order": 14,
|
463 |
+
"mode": 0,
|
464 |
+
"inputs": [
|
465 |
+
{
|
466 |
+
"name": "images",
|
467 |
+
"type": "IMAGE",
|
468 |
+
"link": 10
|
469 |
+
}
|
470 |
+
],
|
471 |
+
"properties": {
|
472 |
+
"Node name for S&R": "PreviewImage"
|
473 |
+
}
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"id": 46,
|
477 |
+
"type": "IPAdapterAdvanced",
|
478 |
+
"pos": [
|
479 |
+
1033,
|
480 |
+
-36
|
481 |
+
],
|
482 |
+
"size": {
|
483 |
+
"0": 315,
|
484 |
+
"1": 278
|
485 |
+
},
|
486 |
+
"flags": {},
|
487 |
+
"order": 11,
|
488 |
+
"mode": 0,
|
489 |
+
"inputs": [
|
490 |
+
{
|
491 |
+
"name": "model",
|
492 |
+
"type": "MODEL",
|
493 |
+
"link": 137
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"name": "ipadapter",
|
497 |
+
"type": "IPADAPTER",
|
498 |
+
"link": 135,
|
499 |
+
"slot_index": 1
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"name": "image",
|
503 |
+
"type": "IMAGE",
|
504 |
+
"link": 139,
|
505 |
+
"slot_index": 2
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"name": "image_negative",
|
509 |
+
"type": "IMAGE",
|
510 |
+
"link": null
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"name": "attn_mask",
|
514 |
+
"type": "MASK",
|
515 |
+
"link": null
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"name": "clip_vision",
|
519 |
+
"type": "CLIP_VISION",
|
520 |
+
"link": null
|
521 |
+
}
|
522 |
+
],
|
523 |
+
"outputs": [
|
524 |
+
{
|
525 |
+
"name": "MODEL",
|
526 |
+
"type": "MODEL",
|
527 |
+
"links": [
|
528 |
+
138
|
529 |
+
],
|
530 |
+
"shape": 3,
|
531 |
+
"slot_index": 0
|
532 |
+
}
|
533 |
+
],
|
534 |
+
"properties": {
|
535 |
+
"Node name for S&R": "IPAdapterAdvanced"
|
536 |
+
},
|
537 |
+
"widgets_values": [
|
538 |
+
1,
|
539 |
+
"style transfer",
|
540 |
+
"concat",
|
541 |
+
0,
|
542 |
+
1,
|
543 |
+
"V only"
|
544 |
+
]
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"id": 48,
|
548 |
+
"type": "LoadImage",
|
549 |
+
"pos": [
|
550 |
+
1032,
|
551 |
+
303
|
552 |
+
],
|
553 |
+
"size": [
|
554 |
+
315,
|
555 |
+
314
|
556 |
+
],
|
557 |
+
"flags": {},
|
558 |
+
"order": 6,
|
559 |
+
"mode": 0,
|
560 |
+
"outputs": [
|
561 |
+
{
|
562 |
+
"name": "IMAGE",
|
563 |
+
"type": "IMAGE",
|
564 |
+
"links": [
|
565 |
+
139
|
566 |
+
],
|
567 |
+
"shape": 3
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"name": "MASK",
|
571 |
+
"type": "MASK",
|
572 |
+
"links": null,
|
573 |
+
"shape": 3
|
574 |
+
}
|
575 |
+
],
|
576 |
+
"properties": {
|
577 |
+
"Node name for S&R": "LoadImage"
|
578 |
+
},
|
579 |
+
"widgets_values": [
|
580 |
+
"anime_illustration.png",
|
581 |
+
"image"
|
582 |
+
]
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"id": 3,
|
586 |
+
"type": "KSampler",
|
587 |
+
"pos": [
|
588 |
+
1413,
|
589 |
+
12
|
590 |
+
],
|
591 |
+
"size": {
|
592 |
+
"0": 341.2750244140625,
|
593 |
+
"1": 262
|
594 |
+
},
|
595 |
+
"flags": {},
|
596 |
+
"order": 12,
|
597 |
+
"mode": 0,
|
598 |
+
"inputs": [
|
599 |
+
{
|
600 |
+
"name": "model",
|
601 |
+
"type": "MODEL",
|
602 |
+
"link": 138
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"name": "positive",
|
606 |
+
"type": "CONDITIONING",
|
607 |
+
"link": 35
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"name": "negative",
|
611 |
+
"type": "CONDITIONING",
|
612 |
+
"link": 34
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"name": "latent_image",
|
616 |
+
"type": "LATENT",
|
617 |
+
"link": 2
|
618 |
+
}
|
619 |
+
],
|
620 |
+
"outputs": [
|
621 |
+
{
|
622 |
+
"name": "LATENT",
|
623 |
+
"type": "LATENT",
|
624 |
+
"links": [
|
625 |
+
7
|
626 |
+
],
|
627 |
+
"slot_index": 0
|
628 |
+
}
|
629 |
+
],
|
630 |
+
"properties": {
|
631 |
+
"Node name for S&R": "KSampler"
|
632 |
+
},
|
633 |
+
"widgets_values": [
|
634 |
+
52,
|
635 |
+
"fixed",
|
636 |
+
30,
|
637 |
+
6,
|
638 |
+
"dpmpp_2m",
|
639 |
+
"sgm_uniform",
|
640 |
+
1
|
641 |
+
]
|
642 |
+
}
|
643 |
+
],
|
644 |
+
"links": [
|
645 |
+
[
|
646 |
+
2,
|
647 |
+
5,
|
648 |
+
0,
|
649 |
+
3,
|
650 |
+
3,
|
651 |
+
"LATENT"
|
652 |
+
],
|
653 |
+
[
|
654 |
+
7,
|
655 |
+
3,
|
656 |
+
0,
|
657 |
+
8,
|
658 |
+
0,
|
659 |
+
"LATENT"
|
660 |
+
],
|
661 |
+
[
|
662 |
+
8,
|
663 |
+
4,
|
664 |
+
2,
|
665 |
+
8,
|
666 |
+
1,
|
667 |
+
"VAE"
|
668 |
+
],
|
669 |
+
[
|
670 |
+
10,
|
671 |
+
8,
|
672 |
+
0,
|
673 |
+
10,
|
674 |
+
0,
|
675 |
+
"IMAGE"
|
676 |
+
],
|
677 |
+
[
|
678 |
+
34,
|
679 |
+
23,
|
680 |
+
0,
|
681 |
+
3,
|
682 |
+
2,
|
683 |
+
"CONDITIONING"
|
684 |
+
],
|
685 |
+
[
|
686 |
+
35,
|
687 |
+
22,
|
688 |
+
0,
|
689 |
+
3,
|
690 |
+
1,
|
691 |
+
"CONDITIONING"
|
692 |
+
],
|
693 |
+
[
|
694 |
+
81,
|
695 |
+
19,
|
696 |
+
0,
|
697 |
+
33,
|
698 |
+
2,
|
699 |
+
"EVA_CLIP"
|
700 |
+
],
|
701 |
+
[
|
702 |
+
82,
|
703 |
+
17,
|
704 |
+
0,
|
705 |
+
33,
|
706 |
+
3,
|
707 |
+
"FACEANALYSIS"
|
708 |
+
],
|
709 |
+
[
|
710 |
+
93,
|
711 |
+
4,
|
712 |
+
1,
|
713 |
+
22,
|
714 |
+
0,
|
715 |
+
"CLIP"
|
716 |
+
],
|
717 |
+
[
|
718 |
+
94,
|
719 |
+
4,
|
720 |
+
1,
|
721 |
+
23,
|
722 |
+
0,
|
723 |
+
"CLIP"
|
724 |
+
],
|
725 |
+
[
|
726 |
+
114,
|
727 |
+
12,
|
728 |
+
0,
|
729 |
+
33,
|
730 |
+
4,
|
731 |
+
"IMAGE"
|
732 |
+
],
|
733 |
+
[
|
734 |
+
117,
|
735 |
+
16,
|
736 |
+
0,
|
737 |
+
33,
|
738 |
+
1,
|
739 |
+
"PULID"
|
740 |
+
],
|
741 |
+
[
|
742 |
+
133,
|
743 |
+
4,
|
744 |
+
0,
|
745 |
+
33,
|
746 |
+
0,
|
747 |
+
"MODEL"
|
748 |
+
],
|
749 |
+
[
|
750 |
+
135,
|
751 |
+
47,
|
752 |
+
1,
|
753 |
+
46,
|
754 |
+
1,
|
755 |
+
"IPADAPTER"
|
756 |
+
],
|
757 |
+
[
|
758 |
+
136,
|
759 |
+
33,
|
760 |
+
0,
|
761 |
+
47,
|
762 |
+
0,
|
763 |
+
"MODEL"
|
764 |
+
],
|
765 |
+
[
|
766 |
+
137,
|
767 |
+
47,
|
768 |
+
0,
|
769 |
+
46,
|
770 |
+
0,
|
771 |
+
"MODEL"
|
772 |
+
],
|
773 |
+
[
|
774 |
+
138,
|
775 |
+
46,
|
776 |
+
0,
|
777 |
+
3,
|
778 |
+
0,
|
779 |
+
"MODEL"
|
780 |
+
],
|
781 |
+
[
|
782 |
+
139,
|
783 |
+
48,
|
784 |
+
0,
|
785 |
+
46,
|
786 |
+
2,
|
787 |
+
"IMAGE"
|
788 |
+
]
|
789 |
+
],
|
790 |
+
"groups": [],
|
791 |
+
"config": {},
|
792 |
+
"extra": {},
|
793 |
+
"version": 0.4
|
794 |
+
}
|
PuLID_ComfyUI/examples/PuLID_attention_mask.json
ADDED
@@ -0,0 +1,946 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 88,
|
3 |
+
"last_link_id": 248,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 5,
|
7 |
+
"type": "EmptyLatentImage",
|
8 |
+
"pos": [
|
9 |
+
350,
|
10 |
+
265
|
11 |
+
],
|
12 |
+
"size": {
|
13 |
+
"0": 315,
|
14 |
+
"1": 106
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 0,
|
18 |
+
"mode": 0,
|
19 |
+
"outputs": [
|
20 |
+
{
|
21 |
+
"name": "LATENT",
|
22 |
+
"type": "LATENT",
|
23 |
+
"links": [
|
24 |
+
2
|
25 |
+
],
|
26 |
+
"slot_index": 0
|
27 |
+
}
|
28 |
+
],
|
29 |
+
"properties": {
|
30 |
+
"Node name for S&R": "EmptyLatentImage"
|
31 |
+
},
|
32 |
+
"widgets_values": [
|
33 |
+
1280,
|
34 |
+
960,
|
35 |
+
1
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"id": 33,
|
40 |
+
"type": "ApplyPulid",
|
41 |
+
"pos": [
|
42 |
+
350,
|
43 |
+
-10
|
44 |
+
],
|
45 |
+
"size": {
|
46 |
+
"0": 315,
|
47 |
+
"1": 230
|
48 |
+
},
|
49 |
+
"flags": {},
|
50 |
+
"order": 13,
|
51 |
+
"mode": 0,
|
52 |
+
"inputs": [
|
53 |
+
{
|
54 |
+
"name": "model",
|
55 |
+
"type": "MODEL",
|
56 |
+
"link": 133
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"name": "pulid",
|
60 |
+
"type": "PULID",
|
61 |
+
"link": 117
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"name": "eva_clip",
|
65 |
+
"type": "EVA_CLIP",
|
66 |
+
"link": 81
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"name": "face_analysis",
|
70 |
+
"type": "FACEANALYSIS",
|
71 |
+
"link": 82
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"name": "image",
|
75 |
+
"type": "IMAGE",
|
76 |
+
"link": 114
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"name": "attn_mask",
|
80 |
+
"type": "MASK",
|
81 |
+
"link": 247
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"outputs": [
|
85 |
+
{
|
86 |
+
"name": "MODEL",
|
87 |
+
"type": "MODEL",
|
88 |
+
"links": [
|
89 |
+
141
|
90 |
+
],
|
91 |
+
"shape": 3,
|
92 |
+
"slot_index": 0
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"properties": {
|
96 |
+
"Node name for S&R": "ApplyPulid"
|
97 |
+
},
|
98 |
+
"widgets_values": [
|
99 |
+
"fidelity",
|
100 |
+
0.7000000000000001,
|
101 |
+
0,
|
102 |
+
1
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"id": 85,
|
107 |
+
"type": "SolidMask",
|
108 |
+
"pos": [
|
109 |
+
-307,
|
110 |
+
584
|
111 |
+
],
|
112 |
+
"size": [
|
113 |
+
210,
|
114 |
+
106
|
115 |
+
],
|
116 |
+
"flags": {},
|
117 |
+
"order": 1,
|
118 |
+
"mode": 0,
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "MASK",
|
122 |
+
"type": "MASK",
|
123 |
+
"links": [
|
124 |
+
244
|
125 |
+
],
|
126 |
+
"shape": 3,
|
127 |
+
"slot_index": 0
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"properties": {
|
131 |
+
"Node name for S&R": "SolidMask"
|
132 |
+
},
|
133 |
+
"widgets_values": [
|
134 |
+
0,
|
135 |
+
1280,
|
136 |
+
960
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"id": 49,
|
141 |
+
"type": "LoadImage",
|
142 |
+
"pos": [
|
143 |
+
407,
|
144 |
+
550
|
145 |
+
],
|
146 |
+
"size": [
|
147 |
+
248.03589794921936,
|
148 |
+
339.7795556640626
|
149 |
+
],
|
150 |
+
"flags": {},
|
151 |
+
"order": 2,
|
152 |
+
"mode": 0,
|
153 |
+
"outputs": [
|
154 |
+
{
|
155 |
+
"name": "IMAGE",
|
156 |
+
"type": "IMAGE",
|
157 |
+
"links": [
|
158 |
+
145
|
159 |
+
],
|
160 |
+
"shape": 3,
|
161 |
+
"slot_index": 0
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"name": "MASK",
|
165 |
+
"type": "MASK",
|
166 |
+
"links": null,
|
167 |
+
"shape": 3
|
168 |
+
}
|
169 |
+
],
|
170 |
+
"properties": {
|
171 |
+
"Node name for S&R": "LoadImage"
|
172 |
+
},
|
173 |
+
"widgets_values": [
|
174 |
+
"venere.jpg",
|
175 |
+
"image"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"id": 48,
|
180 |
+
"type": "InvertMask",
|
181 |
+
"pos": [
|
182 |
+
526,
|
183 |
+
438
|
184 |
+
],
|
185 |
+
"size": [
|
186 |
+
140,
|
187 |
+
26
|
188 |
+
],
|
189 |
+
"flags": {},
|
190 |
+
"order": 12,
|
191 |
+
"mode": 0,
|
192 |
+
"inputs": [
|
193 |
+
{
|
194 |
+
"name": "mask",
|
195 |
+
"type": "MASK",
|
196 |
+
"link": 246
|
197 |
+
}
|
198 |
+
],
|
199 |
+
"outputs": [
|
200 |
+
{
|
201 |
+
"name": "MASK",
|
202 |
+
"type": "MASK",
|
203 |
+
"links": [
|
204 |
+
151
|
205 |
+
],
|
206 |
+
"shape": 3,
|
207 |
+
"slot_index": 0
|
208 |
+
}
|
209 |
+
],
|
210 |
+
"properties": {
|
211 |
+
"Node name for S&R": "InvertMask"
|
212 |
+
}
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"id": 8,
|
216 |
+
"type": "VAEDecode",
|
217 |
+
"pos": [
|
218 |
+
1575,
|
219 |
+
160
|
220 |
+
],
|
221 |
+
"size": {
|
222 |
+
"0": 140,
|
223 |
+
"1": 46
|
224 |
+
},
|
225 |
+
"flags": {},
|
226 |
+
"order": 16,
|
227 |
+
"mode": 0,
|
228 |
+
"inputs": [
|
229 |
+
{
|
230 |
+
"name": "samples",
|
231 |
+
"type": "LATENT",
|
232 |
+
"link": 7
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"name": "vae",
|
236 |
+
"type": "VAE",
|
237 |
+
"link": 8
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"outputs": [
|
241 |
+
{
|
242 |
+
"name": "IMAGE",
|
243 |
+
"type": "IMAGE",
|
244 |
+
"links": [
|
245 |
+
10
|
246 |
+
],
|
247 |
+
"slot_index": 0
|
248 |
+
}
|
249 |
+
],
|
250 |
+
"properties": {
|
251 |
+
"Node name for S&R": "VAEDecode"
|
252 |
+
}
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"id": 10,
|
256 |
+
"type": "PreviewImage",
|
257 |
+
"pos": [
|
258 |
+
1592,
|
259 |
+
279
|
260 |
+
],
|
261 |
+
"size": [
|
262 |
+
1370.7157657734379,
|
263 |
+
1041.8039240156252
|
264 |
+
],
|
265 |
+
"flags": {},
|
266 |
+
"order": 17,
|
267 |
+
"mode": 0,
|
268 |
+
"inputs": [
|
269 |
+
{
|
270 |
+
"name": "images",
|
271 |
+
"type": "IMAGE",
|
272 |
+
"link": 10
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"properties": {
|
276 |
+
"Node name for S&R": "PreviewImage"
|
277 |
+
}
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"id": 16,
|
281 |
+
"type": "PulidModelLoader",
|
282 |
+
"pos": [
|
283 |
+
-111,
|
284 |
+
-181
|
285 |
+
],
|
286 |
+
"size": {
|
287 |
+
"0": 304.0072021484375,
|
288 |
+
"1": 58
|
289 |
+
},
|
290 |
+
"flags": {},
|
291 |
+
"order": 3,
|
292 |
+
"mode": 0,
|
293 |
+
"outputs": [
|
294 |
+
{
|
295 |
+
"name": "PULID",
|
296 |
+
"type": "PULID",
|
297 |
+
"links": [
|
298 |
+
117,
|
299 |
+
136
|
300 |
+
],
|
301 |
+
"shape": 3,
|
302 |
+
"slot_index": 0
|
303 |
+
}
|
304 |
+
],
|
305 |
+
"properties": {
|
306 |
+
"Node name for S&R": "PulidModelLoader"
|
307 |
+
},
|
308 |
+
"widgets_values": [
|
309 |
+
"ip-adapter_pulid_sdxl_fp16.safetensors"
|
310 |
+
]
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"id": 19,
|
314 |
+
"type": "PulidEvaClipLoader",
|
315 |
+
"pos": [
|
316 |
+
54,
|
317 |
+
-69
|
318 |
+
],
|
319 |
+
"size": {
|
320 |
+
"0": 140,
|
321 |
+
"1": 26
|
322 |
+
},
|
323 |
+
"flags": {},
|
324 |
+
"order": 4,
|
325 |
+
"mode": 0,
|
326 |
+
"outputs": [
|
327 |
+
{
|
328 |
+
"name": "EVA_CLIP",
|
329 |
+
"type": "EVA_CLIP",
|
330 |
+
"links": [
|
331 |
+
81,
|
332 |
+
137
|
333 |
+
],
|
334 |
+
"shape": 3,
|
335 |
+
"slot_index": 0
|
336 |
+
}
|
337 |
+
],
|
338 |
+
"properties": {
|
339 |
+
"Node name for S&R": "PulidEvaClipLoader"
|
340 |
+
}
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"id": 17,
|
344 |
+
"type": "PulidInsightFaceLoader",
|
345 |
+
"pos": [
|
346 |
+
-18,
|
347 |
+
12
|
348 |
+
],
|
349 |
+
"size": {
|
350 |
+
"0": 210,
|
351 |
+
"1": 58
|
352 |
+
},
|
353 |
+
"flags": {},
|
354 |
+
"order": 5,
|
355 |
+
"mode": 0,
|
356 |
+
"outputs": [
|
357 |
+
{
|
358 |
+
"name": "FACEANALYSIS",
|
359 |
+
"type": "FACEANALYSIS",
|
360 |
+
"links": [
|
361 |
+
82,
|
362 |
+
138
|
363 |
+
],
|
364 |
+
"shape": 3,
|
365 |
+
"slot_index": 0
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"properties": {
|
369 |
+
"Node name for S&R": "PulidInsightFaceLoader"
|
370 |
+
},
|
371 |
+
"widgets_values": [
|
372 |
+
"CPU"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"id": 12,
|
377 |
+
"type": "LoadImage",
|
378 |
+
"pos": [
|
379 |
+
-34,
|
380 |
+
145
|
381 |
+
],
|
382 |
+
"size": [
|
383 |
+
261.645185990767,
|
384 |
+
346.38255171342325
|
385 |
+
],
|
386 |
+
"flags": {},
|
387 |
+
"order": 6,
|
388 |
+
"mode": 0,
|
389 |
+
"outputs": [
|
390 |
+
{
|
391 |
+
"name": "IMAGE",
|
392 |
+
"type": "IMAGE",
|
393 |
+
"links": [
|
394 |
+
114
|
395 |
+
],
|
396 |
+
"shape": 3,
|
397 |
+
"slot_index": 0
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"name": "MASK",
|
401 |
+
"type": "MASK",
|
402 |
+
"links": null,
|
403 |
+
"shape": 3
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"properties": {
|
407 |
+
"Node name for S&R": "LoadImage"
|
408 |
+
},
|
409 |
+
"widgets_values": [
|
410 |
+
"monalisa.png",
|
411 |
+
"image"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"id": 87,
|
416 |
+
"type": "MaskComposite",
|
417 |
+
"pos": [
|
418 |
+
15,
|
419 |
+
546
|
420 |
+
],
|
421 |
+
"size": [
|
422 |
+
210,
|
423 |
+
126
|
424 |
+
],
|
425 |
+
"flags": {},
|
426 |
+
"order": 9,
|
427 |
+
"mode": 0,
|
428 |
+
"inputs": [
|
429 |
+
{
|
430 |
+
"name": "destination",
|
431 |
+
"type": "MASK",
|
432 |
+
"link": 244
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"name": "source",
|
436 |
+
"type": "MASK",
|
437 |
+
"link": 245
|
438 |
+
}
|
439 |
+
],
|
440 |
+
"outputs": [
|
441 |
+
{
|
442 |
+
"name": "MASK",
|
443 |
+
"type": "MASK",
|
444 |
+
"links": [
|
445 |
+
246,
|
446 |
+
247
|
447 |
+
],
|
448 |
+
"shape": 3,
|
449 |
+
"slot_index": 0
|
450 |
+
}
|
451 |
+
],
|
452 |
+
"properties": {
|
453 |
+
"Node name for S&R": "MaskComposite"
|
454 |
+
},
|
455 |
+
"widgets_values": [
|
456 |
+
0,
|
457 |
+
0,
|
458 |
+
"add"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"id": 86,
|
463 |
+
"type": "SolidMask",
|
464 |
+
"pos": [
|
465 |
+
-304,
|
466 |
+
747
|
467 |
+
],
|
468 |
+
"size": {
|
469 |
+
"0": 210,
|
470 |
+
"1": 106
|
471 |
+
},
|
472 |
+
"flags": {},
|
473 |
+
"order": 7,
|
474 |
+
"mode": 0,
|
475 |
+
"outputs": [
|
476 |
+
{
|
477 |
+
"name": "MASK",
|
478 |
+
"type": "MASK",
|
479 |
+
"links": [
|
480 |
+
245
|
481 |
+
],
|
482 |
+
"shape": 3,
|
483 |
+
"slot_index": 0
|
484 |
+
}
|
485 |
+
],
|
486 |
+
"properties": {
|
487 |
+
"Node name for S&R": "SolidMask"
|
488 |
+
},
|
489 |
+
"widgets_values": [
|
490 |
+
1,
|
491 |
+
640,
|
492 |
+
960
|
493 |
+
]
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"id": 23,
|
497 |
+
"type": "CLIPTextEncode",
|
498 |
+
"pos": [
|
499 |
+
756,
|
500 |
+
-47
|
501 |
+
],
|
502 |
+
"size": [
|
503 |
+
316.32471195096673,
|
504 |
+
101.97065006593618
|
505 |
+
],
|
506 |
+
"flags": {},
|
507 |
+
"order": 10,
|
508 |
+
"mode": 0,
|
509 |
+
"inputs": [
|
510 |
+
{
|
511 |
+
"name": "clip",
|
512 |
+
"type": "CLIP",
|
513 |
+
"link": 94
|
514 |
+
}
|
515 |
+
],
|
516 |
+
"outputs": [
|
517 |
+
{
|
518 |
+
"name": "CONDITIONING",
|
519 |
+
"type": "CONDITIONING",
|
520 |
+
"links": [
|
521 |
+
34
|
522 |
+
],
|
523 |
+
"shape": 3,
|
524 |
+
"slot_index": 0
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"properties": {
|
528 |
+
"Node name for S&R": "CLIPTextEncode"
|
529 |
+
},
|
530 |
+
"widgets_values": [
|
531 |
+
"blurry, malformed, low quality, worst quality, artifacts, noise, text, watermark, glitch, deformed, ugly, horror, ill"
|
532 |
+
]
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"id": 47,
|
536 |
+
"type": "ApplyPulid",
|
537 |
+
"pos": [
|
538 |
+
765,
|
539 |
+
128
|
540 |
+
],
|
541 |
+
"size": {
|
542 |
+
"0": 315,
|
543 |
+
"1": 230
|
544 |
+
},
|
545 |
+
"flags": {},
|
546 |
+
"order": 14,
|
547 |
+
"mode": 0,
|
548 |
+
"inputs": [
|
549 |
+
{
|
550 |
+
"name": "model",
|
551 |
+
"type": "MODEL",
|
552 |
+
"link": 141
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"name": "pulid",
|
556 |
+
"type": "PULID",
|
557 |
+
"link": 136
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"name": "eva_clip",
|
561 |
+
"type": "EVA_CLIP",
|
562 |
+
"link": 137
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"name": "face_analysis",
|
566 |
+
"type": "FACEANALYSIS",
|
567 |
+
"link": 138
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"name": "image",
|
571 |
+
"type": "IMAGE",
|
572 |
+
"link": 145
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"name": "attn_mask",
|
576 |
+
"type": "MASK",
|
577 |
+
"link": 151
|
578 |
+
}
|
579 |
+
],
|
580 |
+
"outputs": [
|
581 |
+
{
|
582 |
+
"name": "MODEL",
|
583 |
+
"type": "MODEL",
|
584 |
+
"links": [
|
585 |
+
142
|
586 |
+
],
|
587 |
+
"shape": 3,
|
588 |
+
"slot_index": 0
|
589 |
+
}
|
590 |
+
],
|
591 |
+
"properties": {
|
592 |
+
"Node name for S&R": "ApplyPulid"
|
593 |
+
},
|
594 |
+
"widgets_values": [
|
595 |
+
"fidelity",
|
596 |
+
0.7000000000000001,
|
597 |
+
0,
|
598 |
+
1
|
599 |
+
]
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"id": 55,
|
603 |
+
"type": "CLIPTextEncode",
|
604 |
+
"pos": [
|
605 |
+
755,
|
606 |
+
-211
|
607 |
+
],
|
608 |
+
"size": {
|
609 |
+
"0": 315.23089599609375,
|
610 |
+
"1": 113.96450805664062
|
611 |
+
},
|
612 |
+
"flags": {},
|
613 |
+
"order": 11,
|
614 |
+
"mode": 0,
|
615 |
+
"inputs": [
|
616 |
+
{
|
617 |
+
"name": "clip",
|
618 |
+
"type": "CLIP",
|
619 |
+
"link": 156
|
620 |
+
}
|
621 |
+
],
|
622 |
+
"outputs": [
|
623 |
+
{
|
624 |
+
"name": "CONDITIONING",
|
625 |
+
"type": "CONDITIONING",
|
626 |
+
"links": [
|
627 |
+
160
|
628 |
+
],
|
629 |
+
"shape": 3,
|
630 |
+
"slot_index": 0
|
631 |
+
}
|
632 |
+
],
|
633 |
+
"properties": {
|
634 |
+
"Node name for S&R": "CLIPTextEncode"
|
635 |
+
},
|
636 |
+
"widgets_values": [
|
637 |
+
"closeup two girl friends on the streets of a cyberpunk city, cinematic, hoodie, multicolored hair, highly detailed, 4k, high resolution"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"id": 3,
|
642 |
+
"type": "KSampler",
|
643 |
+
"pos": [
|
644 |
+
1162,
|
645 |
+
38
|
646 |
+
],
|
647 |
+
"size": {
|
648 |
+
"0": 341.2750244140625,
|
649 |
+
"1": 262
|
650 |
+
},
|
651 |
+
"flags": {},
|
652 |
+
"order": 15,
|
653 |
+
"mode": 0,
|
654 |
+
"inputs": [
|
655 |
+
{
|
656 |
+
"name": "model",
|
657 |
+
"type": "MODEL",
|
658 |
+
"link": 142
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"name": "positive",
|
662 |
+
"type": "CONDITIONING",
|
663 |
+
"link": 160
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"name": "negative",
|
667 |
+
"type": "CONDITIONING",
|
668 |
+
"link": 34
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"name": "latent_image",
|
672 |
+
"type": "LATENT",
|
673 |
+
"link": 2
|
674 |
+
}
|
675 |
+
],
|
676 |
+
"outputs": [
|
677 |
+
{
|
678 |
+
"name": "LATENT",
|
679 |
+
"type": "LATENT",
|
680 |
+
"links": [
|
681 |
+
7
|
682 |
+
],
|
683 |
+
"slot_index": 0
|
684 |
+
}
|
685 |
+
],
|
686 |
+
"properties": {
|
687 |
+
"Node name for S&R": "KSampler"
|
688 |
+
},
|
689 |
+
"widgets_values": [
|
690 |
+
70,
|
691 |
+
"fixed",
|
692 |
+
30,
|
693 |
+
6,
|
694 |
+
"dpmpp_2m",
|
695 |
+
"karras",
|
696 |
+
1
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"id": 4,
|
701 |
+
"type": "CheckpointLoaderSimple",
|
702 |
+
"pos": [
|
703 |
+
-131,
|
704 |
+
-342
|
705 |
+
],
|
706 |
+
"size": {
|
707 |
+
"0": 319.03692626953125,
|
708 |
+
"1": 101.3391342163086
|
709 |
+
},
|
710 |
+
"flags": {},
|
711 |
+
"order": 8,
|
712 |
+
"mode": 0,
|
713 |
+
"outputs": [
|
714 |
+
{
|
715 |
+
"name": "MODEL",
|
716 |
+
"type": "MODEL",
|
717 |
+
"links": [
|
718 |
+
133
|
719 |
+
],
|
720 |
+
"slot_index": 0
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"name": "CLIP",
|
724 |
+
"type": "CLIP",
|
725 |
+
"links": [
|
726 |
+
94,
|
727 |
+
156
|
728 |
+
],
|
729 |
+
"slot_index": 1
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"name": "VAE",
|
733 |
+
"type": "VAE",
|
734 |
+
"links": [
|
735 |
+
8
|
736 |
+
],
|
737 |
+
"slot_index": 2
|
738 |
+
}
|
739 |
+
],
|
740 |
+
"properties": {
|
741 |
+
"Node name for S&R": "CheckpointLoaderSimple"
|
742 |
+
},
|
743 |
+
"widgets_values": [
|
744 |
+
"sdxl/AlbedoBaseXL.safetensors"
|
745 |
+
]
|
746 |
+
}
|
747 |
+
],
|
748 |
+
"links": [
|
749 |
+
[
|
750 |
+
2,
|
751 |
+
5,
|
752 |
+
0,
|
753 |
+
3,
|
754 |
+
3,
|
755 |
+
"LATENT"
|
756 |
+
],
|
757 |
+
[
|
758 |
+
7,
|
759 |
+
3,
|
760 |
+
0,
|
761 |
+
8,
|
762 |
+
0,
|
763 |
+
"LATENT"
|
764 |
+
],
|
765 |
+
[
|
766 |
+
8,
|
767 |
+
4,
|
768 |
+
2,
|
769 |
+
8,
|
770 |
+
1,
|
771 |
+
"VAE"
|
772 |
+
],
|
773 |
+
[
|
774 |
+
10,
|
775 |
+
8,
|
776 |
+
0,
|
777 |
+
10,
|
778 |
+
0,
|
779 |
+
"IMAGE"
|
780 |
+
],
|
781 |
+
[
|
782 |
+
34,
|
783 |
+
23,
|
784 |
+
0,
|
785 |
+
3,
|
786 |
+
2,
|
787 |
+
"CONDITIONING"
|
788 |
+
],
|
789 |
+
[
|
790 |
+
81,
|
791 |
+
19,
|
792 |
+
0,
|
793 |
+
33,
|
794 |
+
2,
|
795 |
+
"EVA_CLIP"
|
796 |
+
],
|
797 |
+
[
|
798 |
+
82,
|
799 |
+
17,
|
800 |
+
0,
|
801 |
+
33,
|
802 |
+
3,
|
803 |
+
"FACEANALYSIS"
|
804 |
+
],
|
805 |
+
[
|
806 |
+
94,
|
807 |
+
4,
|
808 |
+
1,
|
809 |
+
23,
|
810 |
+
0,
|
811 |
+
"CLIP"
|
812 |
+
],
|
813 |
+
[
|
814 |
+
114,
|
815 |
+
12,
|
816 |
+
0,
|
817 |
+
33,
|
818 |
+
4,
|
819 |
+
"IMAGE"
|
820 |
+
],
|
821 |
+
[
|
822 |
+
117,
|
823 |
+
16,
|
824 |
+
0,
|
825 |
+
33,
|
826 |
+
1,
|
827 |
+
"PULID"
|
828 |
+
],
|
829 |
+
[
|
830 |
+
133,
|
831 |
+
4,
|
832 |
+
0,
|
833 |
+
33,
|
834 |
+
0,
|
835 |
+
"MODEL"
|
836 |
+
],
|
837 |
+
[
|
838 |
+
136,
|
839 |
+
16,
|
840 |
+
0,
|
841 |
+
47,
|
842 |
+
1,
|
843 |
+
"PULID"
|
844 |
+
],
|
845 |
+
[
|
846 |
+
137,
|
847 |
+
19,
|
848 |
+
0,
|
849 |
+
47,
|
850 |
+
2,
|
851 |
+
"EVA_CLIP"
|
852 |
+
],
|
853 |
+
[
|
854 |
+
138,
|
855 |
+
17,
|
856 |
+
0,
|
857 |
+
47,
|
858 |
+
3,
|
859 |
+
"FACEANALYSIS"
|
860 |
+
],
|
861 |
+
[
|
862 |
+
141,
|
863 |
+
33,
|
864 |
+
0,
|
865 |
+
47,
|
866 |
+
0,
|
867 |
+
"MODEL"
|
868 |
+
],
|
869 |
+
[
|
870 |
+
142,
|
871 |
+
47,
|
872 |
+
0,
|
873 |
+
3,
|
874 |
+
0,
|
875 |
+
"MODEL"
|
876 |
+
],
|
877 |
+
[
|
878 |
+
145,
|
879 |
+
49,
|
880 |
+
0,
|
881 |
+
47,
|
882 |
+
4,
|
883 |
+
"IMAGE"
|
884 |
+
],
|
885 |
+
[
|
886 |
+
151,
|
887 |
+
48,
|
888 |
+
0,
|
889 |
+
47,
|
890 |
+
5,
|
891 |
+
"MASK"
|
892 |
+
],
|
893 |
+
[
|
894 |
+
156,
|
895 |
+
4,
|
896 |
+
1,
|
897 |
+
55,
|
898 |
+
0,
|
899 |
+
"CLIP"
|
900 |
+
],
|
901 |
+
[
|
902 |
+
160,
|
903 |
+
55,
|
904 |
+
0,
|
905 |
+
3,
|
906 |
+
1,
|
907 |
+
"CONDITIONING"
|
908 |
+
],
|
909 |
+
[
|
910 |
+
244,
|
911 |
+
85,
|
912 |
+
0,
|
913 |
+
87,
|
914 |
+
0,
|
915 |
+
"MASK"
|
916 |
+
],
|
917 |
+
[
|
918 |
+
245,
|
919 |
+
86,
|
920 |
+
0,
|
921 |
+
87,
|
922 |
+
1,
|
923 |
+
"MASK"
|
924 |
+
],
|
925 |
+
[
|
926 |
+
246,
|
927 |
+
87,
|
928 |
+
0,
|
929 |
+
48,
|
930 |
+
0,
|
931 |
+
"MASK"
|
932 |
+
],
|
933 |
+
[
|
934 |
+
247,
|
935 |
+
87,
|
936 |
+
0,
|
937 |
+
33,
|
938 |
+
5,
|
939 |
+
"MASK"
|
940 |
+
]
|
941 |
+
],
|
942 |
+
"groups": [],
|
943 |
+
"config": {},
|
944 |
+
"extra": {},
|
945 |
+
"version": 0.4
|
946 |
+
}
|
PuLID_ComfyUI/examples/PuLID_lightning_lora.json
ADDED
@@ -0,0 +1,649 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 45,
|
3 |
+
"last_link_id": 132,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 8,
|
7 |
+
"type": "VAEDecode",
|
8 |
+
"pos": [
|
9 |
+
1210,
|
10 |
+
-270
|
11 |
+
],
|
12 |
+
"size": {
|
13 |
+
"0": 140,
|
14 |
+
"1": 46
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 11,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "samples",
|
22 |
+
"type": "LATENT",
|
23 |
+
"link": 7
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"name": "vae",
|
27 |
+
"type": "VAE",
|
28 |
+
"link": 8
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"name": "IMAGE",
|
34 |
+
"type": "IMAGE",
|
35 |
+
"links": [
|
36 |
+
10
|
37 |
+
],
|
38 |
+
"slot_index": 0
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"properties": {
|
42 |
+
"Node name for S&R": "VAEDecode"
|
43 |
+
}
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"id": 19,
|
47 |
+
"type": "PulidEvaClipLoader",
|
48 |
+
"pos": [
|
49 |
+
130,
|
50 |
+
120
|
51 |
+
],
|
52 |
+
"size": {
|
53 |
+
"0": 140,
|
54 |
+
"1": 26
|
55 |
+
},
|
56 |
+
"flags": {},
|
57 |
+
"order": 0,
|
58 |
+
"mode": 0,
|
59 |
+
"outputs": [
|
60 |
+
{
|
61 |
+
"name": "EVA_CLIP",
|
62 |
+
"type": "EVA_CLIP",
|
63 |
+
"links": [
|
64 |
+
81
|
65 |
+
],
|
66 |
+
"shape": 3,
|
67 |
+
"slot_index": 0
|
68 |
+
}
|
69 |
+
],
|
70 |
+
"properties": {
|
71 |
+
"Node name for S&R": "PulidEvaClipLoader"
|
72 |
+
}
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"id": 17,
|
76 |
+
"type": "PulidInsightFaceLoader",
|
77 |
+
"pos": [
|
78 |
+
60,
|
79 |
+
190
|
80 |
+
],
|
81 |
+
"size": {
|
82 |
+
"0": 210,
|
83 |
+
"1": 58
|
84 |
+
},
|
85 |
+
"flags": {},
|
86 |
+
"order": 1,
|
87 |
+
"mode": 0,
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"name": "FACEANALYSIS",
|
91 |
+
"type": "FACEANALYSIS",
|
92 |
+
"links": [
|
93 |
+
82
|
94 |
+
],
|
95 |
+
"shape": 3,
|
96 |
+
"slot_index": 0
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"properties": {
|
100 |
+
"Node name for S&R": "PulidInsightFaceLoader"
|
101 |
+
},
|
102 |
+
"widgets_values": [
|
103 |
+
"CPU"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"id": 23,
|
108 |
+
"type": "CLIPTextEncode",
|
109 |
+
"pos": [
|
110 |
+
330,
|
111 |
+
-260
|
112 |
+
],
|
113 |
+
"size": {
|
114 |
+
"0": 334.8077697753906,
|
115 |
+
"1": 189.35675048828125
|
116 |
+
},
|
117 |
+
"flags": {},
|
118 |
+
"order": 8,
|
119 |
+
"mode": 0,
|
120 |
+
"inputs": [
|
121 |
+
{
|
122 |
+
"name": "clip",
|
123 |
+
"type": "CLIP",
|
124 |
+
"link": 94
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"outputs": [
|
128 |
+
{
|
129 |
+
"name": "CONDITIONING",
|
130 |
+
"type": "CONDITIONING",
|
131 |
+
"links": [
|
132 |
+
34
|
133 |
+
],
|
134 |
+
"shape": 3,
|
135 |
+
"slot_index": 0
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"properties": {
|
139 |
+
"Node name for S&R": "CLIPTextEncode"
|
140 |
+
},
|
141 |
+
"widgets_values": [
|
142 |
+
"flaws in the eyes, flaws in the face, flaws, lowres, non-HDRi, low quality, worst quality,artifacts noise, text, watermark, glitch, deformed, mutated, ugly, disfigured, hands, low resolution, partially rendered objects, deformed or partially rendered eyes, deformed, deformed eyeballs, cross-eyed,blurry"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"id": 22,
|
147 |
+
"type": "CLIPTextEncode",
|
148 |
+
"pos": [
|
149 |
+
340,
|
150 |
+
-430
|
151 |
+
],
|
152 |
+
"size": {
|
153 |
+
"0": 315.23089599609375,
|
154 |
+
"1": 113.96450805664062
|
155 |
+
},
|
156 |
+
"flags": {},
|
157 |
+
"order": 7,
|
158 |
+
"mode": 0,
|
159 |
+
"inputs": [
|
160 |
+
{
|
161 |
+
"name": "clip",
|
162 |
+
"type": "CLIP",
|
163 |
+
"link": 93
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"outputs": [
|
167 |
+
{
|
168 |
+
"name": "CONDITIONING",
|
169 |
+
"type": "CONDITIONING",
|
170 |
+
"links": [
|
171 |
+
35
|
172 |
+
],
|
173 |
+
"shape": 3,
|
174 |
+
"slot_index": 0
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"properties": {
|
178 |
+
"Node name for S&R": "CLIPTextEncode"
|
179 |
+
},
|
180 |
+
"widgets_values": [
|
181 |
+
"portrait,cinematic,wolf ears,white hair"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"id": 10,
|
186 |
+
"type": "PreviewImage",
|
187 |
+
"pos": [
|
188 |
+
1230,
|
189 |
+
-160
|
190 |
+
],
|
191 |
+
"size": [
|
192 |
+
855.3022058439137,
|
193 |
+
1107.2183523542942
|
194 |
+
],
|
195 |
+
"flags": {},
|
196 |
+
"order": 12,
|
197 |
+
"mode": 0,
|
198 |
+
"inputs": [
|
199 |
+
{
|
200 |
+
"name": "images",
|
201 |
+
"type": "IMAGE",
|
202 |
+
"link": 10
|
203 |
+
}
|
204 |
+
],
|
205 |
+
"properties": {
|
206 |
+
"Node name for S&R": "PreviewImage"
|
207 |
+
}
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"id": 12,
|
211 |
+
"type": "LoadImage",
|
212 |
+
"pos": [
|
213 |
+
-117,
|
214 |
+
336
|
215 |
+
],
|
216 |
+
"size": {
|
217 |
+
"0": 404.07366943359375,
|
218 |
+
"1": 496.2817077636719
|
219 |
+
},
|
220 |
+
"flags": {},
|
221 |
+
"order": 2,
|
222 |
+
"mode": 0,
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"name": "IMAGE",
|
226 |
+
"type": "IMAGE",
|
227 |
+
"links": [
|
228 |
+
114
|
229 |
+
],
|
230 |
+
"shape": 3,
|
231 |
+
"slot_index": 0
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"name": "MASK",
|
235 |
+
"type": "MASK",
|
236 |
+
"links": null,
|
237 |
+
"shape": 3
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"properties": {
|
241 |
+
"Node name for S&R": "LoadImage"
|
242 |
+
},
|
243 |
+
"widgets_values": [
|
244 |
+
"monalisa.png",
|
245 |
+
"image"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"id": 16,
|
250 |
+
"type": "PulidModelLoader",
|
251 |
+
"pos": [
|
252 |
+
-20,
|
253 |
+
20
|
254 |
+
],
|
255 |
+
"size": {
|
256 |
+
"0": 304.0072021484375,
|
257 |
+
"1": 58
|
258 |
+
},
|
259 |
+
"flags": {},
|
260 |
+
"order": 3,
|
261 |
+
"mode": 0,
|
262 |
+
"outputs": [
|
263 |
+
{
|
264 |
+
"name": "PULID",
|
265 |
+
"type": "PULID",
|
266 |
+
"links": [
|
267 |
+
117
|
268 |
+
],
|
269 |
+
"shape": 3,
|
270 |
+
"slot_index": 0
|
271 |
+
}
|
272 |
+
],
|
273 |
+
"properties": {
|
274 |
+
"Node name for S&R": "PulidModelLoader"
|
275 |
+
},
|
276 |
+
"widgets_values": [
|
277 |
+
"ip-adapter_pulid_sdxl_fp16.safetensors"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"id": 45,
|
282 |
+
"type": "LoraLoaderModelOnly",
|
283 |
+
"pos": [
|
284 |
+
4,
|
285 |
+
-328
|
286 |
+
],
|
287 |
+
"size": [
|
288 |
+
267.767924663449,
|
289 |
+
82
|
290 |
+
],
|
291 |
+
"flags": {},
|
292 |
+
"order": 6,
|
293 |
+
"mode": 0,
|
294 |
+
"inputs": [
|
295 |
+
{
|
296 |
+
"name": "model",
|
297 |
+
"type": "MODEL",
|
298 |
+
"link": 129
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"outputs": [
|
302 |
+
{
|
303 |
+
"name": "MODEL",
|
304 |
+
"type": "MODEL",
|
305 |
+
"links": [
|
306 |
+
131
|
307 |
+
],
|
308 |
+
"shape": 3,
|
309 |
+
"slot_index": 0
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"properties": {
|
313 |
+
"Node name for S&R": "LoraLoaderModelOnly"
|
314 |
+
},
|
315 |
+
"widgets_values": [
|
316 |
+
"sdxl_lightning_4step_lora.safetensors",
|
317 |
+
1
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"id": 5,
|
322 |
+
"type": "EmptyLatentImage",
|
323 |
+
"pos": [
|
324 |
+
350,
|
325 |
+
265
|
326 |
+
],
|
327 |
+
"size": {
|
328 |
+
"0": 315,
|
329 |
+
"1": 106
|
330 |
+
},
|
331 |
+
"flags": {},
|
332 |
+
"order": 4,
|
333 |
+
"mode": 0,
|
334 |
+
"outputs": [
|
335 |
+
{
|
336 |
+
"name": "LATENT",
|
337 |
+
"type": "LATENT",
|
338 |
+
"links": [
|
339 |
+
2
|
340 |
+
],
|
341 |
+
"slot_index": 0
|
342 |
+
}
|
343 |
+
],
|
344 |
+
"properties": {
|
345 |
+
"Node name for S&R": "EmptyLatentImage"
|
346 |
+
},
|
347 |
+
"widgets_values": [
|
348 |
+
768,
|
349 |
+
1024,
|
350 |
+
1
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"id": 33,
|
355 |
+
"type": "ApplyPulid",
|
356 |
+
"pos": [
|
357 |
+
350,
|
358 |
+
-10
|
359 |
+
],
|
360 |
+
"size": {
|
361 |
+
"0": 315,
|
362 |
+
"1": 210
|
363 |
+
},
|
364 |
+
"flags": {},
|
365 |
+
"order": 9,
|
366 |
+
"mode": 0,
|
367 |
+
"inputs": [
|
368 |
+
{
|
369 |
+
"name": "model",
|
370 |
+
"type": "MODEL",
|
371 |
+
"link": 131
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"name": "pulid",
|
375 |
+
"type": "PULID",
|
376 |
+
"link": 117
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"name": "eva_clip",
|
380 |
+
"type": "EVA_CLIP",
|
381 |
+
"link": 81
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"name": "face_analysis",
|
385 |
+
"type": "FACEANALYSIS",
|
386 |
+
"link": 82
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"name": "image",
|
390 |
+
"type": "IMAGE",
|
391 |
+
"link": 114
|
392 |
+
}
|
393 |
+
],
|
394 |
+
"outputs": [
|
395 |
+
{
|
396 |
+
"name": "MODEL",
|
397 |
+
"type": "MODEL",
|
398 |
+
"links": [
|
399 |
+
132
|
400 |
+
],
|
401 |
+
"shape": 3,
|
402 |
+
"slot_index": 0
|
403 |
+
}
|
404 |
+
],
|
405 |
+
"properties": {
|
406 |
+
"Node name for S&R": "ApplyPulid"
|
407 |
+
},
|
408 |
+
"widgets_values": [
|
409 |
+
"fidelity",
|
410 |
+
0.8,
|
411 |
+
0,
|
412 |
+
1
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"id": 4,
|
417 |
+
"type": "CheckpointLoaderSimple",
|
418 |
+
"pos": [
|
419 |
+
-378,
|
420 |
+
-329
|
421 |
+
],
|
422 |
+
"size": {
|
423 |
+
"0": 319.03692626953125,
|
424 |
+
"1": 101.3391342163086
|
425 |
+
},
|
426 |
+
"flags": {},
|
427 |
+
"order": 5,
|
428 |
+
"mode": 0,
|
429 |
+
"outputs": [
|
430 |
+
{
|
431 |
+
"name": "MODEL",
|
432 |
+
"type": "MODEL",
|
433 |
+
"links": [
|
434 |
+
129
|
435 |
+
],
|
436 |
+
"slot_index": 0
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"name": "CLIP",
|
440 |
+
"type": "CLIP",
|
441 |
+
"links": [
|
442 |
+
93,
|
443 |
+
94
|
444 |
+
],
|
445 |
+
"slot_index": 1
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"name": "VAE",
|
449 |
+
"type": "VAE",
|
450 |
+
"links": [
|
451 |
+
8
|
452 |
+
],
|
453 |
+
"slot_index": 2
|
454 |
+
}
|
455 |
+
],
|
456 |
+
"properties": {
|
457 |
+
"Node name for S&R": "CheckpointLoaderSimple"
|
458 |
+
},
|
459 |
+
"widgets_values": [
|
460 |
+
"sdxl/juggernautXL_version8Rundiffusion.safetensors"
|
461 |
+
]
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"id": 3,
|
465 |
+
"type": "KSampler",
|
466 |
+
"pos": [
|
467 |
+
800,
|
468 |
+
-270
|
469 |
+
],
|
470 |
+
"size": {
|
471 |
+
"0": 341.2750244140625,
|
472 |
+
"1": 262
|
473 |
+
},
|
474 |
+
"flags": {},
|
475 |
+
"order": 10,
|
476 |
+
"mode": 0,
|
477 |
+
"inputs": [
|
478 |
+
{
|
479 |
+
"name": "model",
|
480 |
+
"type": "MODEL",
|
481 |
+
"link": 132
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"name": "positive",
|
485 |
+
"type": "CONDITIONING",
|
486 |
+
"link": 35
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"name": "negative",
|
490 |
+
"type": "CONDITIONING",
|
491 |
+
"link": 34
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"name": "latent_image",
|
495 |
+
"type": "LATENT",
|
496 |
+
"link": 2
|
497 |
+
}
|
498 |
+
],
|
499 |
+
"outputs": [
|
500 |
+
{
|
501 |
+
"name": "LATENT",
|
502 |
+
"type": "LATENT",
|
503 |
+
"links": [
|
504 |
+
7
|
505 |
+
],
|
506 |
+
"slot_index": 0
|
507 |
+
}
|
508 |
+
],
|
509 |
+
"properties": {
|
510 |
+
"Node name for S&R": "KSampler"
|
511 |
+
},
|
512 |
+
"widgets_values": [
|
513 |
+
42,
|
514 |
+
"fixed",
|
515 |
+
4,
|
516 |
+
1.2,
|
517 |
+
"dpmpp_2m",
|
518 |
+
"sgm_uniform",
|
519 |
+
1
|
520 |
+
]
|
521 |
+
}
|
522 |
+
],
|
523 |
+
"links": [
|
524 |
+
[
|
525 |
+
2,
|
526 |
+
5,
|
527 |
+
0,
|
528 |
+
3,
|
529 |
+
3,
|
530 |
+
"LATENT"
|
531 |
+
],
|
532 |
+
[
|
533 |
+
7,
|
534 |
+
3,
|
535 |
+
0,
|
536 |
+
8,
|
537 |
+
0,
|
538 |
+
"LATENT"
|
539 |
+
],
|
540 |
+
[
|
541 |
+
8,
|
542 |
+
4,
|
543 |
+
2,
|
544 |
+
8,
|
545 |
+
1,
|
546 |
+
"VAE"
|
547 |
+
],
|
548 |
+
[
|
549 |
+
10,
|
550 |
+
8,
|
551 |
+
0,
|
552 |
+
10,
|
553 |
+
0,
|
554 |
+
"IMAGE"
|
555 |
+
],
|
556 |
+
[
|
557 |
+
34,
|
558 |
+
23,
|
559 |
+
0,
|
560 |
+
3,
|
561 |
+
2,
|
562 |
+
"CONDITIONING"
|
563 |
+
],
|
564 |
+
[
|
565 |
+
35,
|
566 |
+
22,
|
567 |
+
0,
|
568 |
+
3,
|
569 |
+
1,
|
570 |
+
"CONDITIONING"
|
571 |
+
],
|
572 |
+
[
|
573 |
+
81,
|
574 |
+
19,
|
575 |
+
0,
|
576 |
+
33,
|
577 |
+
2,
|
578 |
+
"EVA_CLIP"
|
579 |
+
],
|
580 |
+
[
|
581 |
+
82,
|
582 |
+
17,
|
583 |
+
0,
|
584 |
+
33,
|
585 |
+
3,
|
586 |
+
"FACEANALYSIS"
|
587 |
+
],
|
588 |
+
[
|
589 |
+
93,
|
590 |
+
4,
|
591 |
+
1,
|
592 |
+
22,
|
593 |
+
0,
|
594 |
+
"CLIP"
|
595 |
+
],
|
596 |
+
[
|
597 |
+
94,
|
598 |
+
4,
|
599 |
+
1,
|
600 |
+
23,
|
601 |
+
0,
|
602 |
+
"CLIP"
|
603 |
+
],
|
604 |
+
[
|
605 |
+
114,
|
606 |
+
12,
|
607 |
+
0,
|
608 |
+
33,
|
609 |
+
4,
|
610 |
+
"IMAGE"
|
611 |
+
],
|
612 |
+
[
|
613 |
+
117,
|
614 |
+
16,
|
615 |
+
0,
|
616 |
+
33,
|
617 |
+
1,
|
618 |
+
"PULID"
|
619 |
+
],
|
620 |
+
[
|
621 |
+
129,
|
622 |
+
4,
|
623 |
+
0,
|
624 |
+
45,
|
625 |
+
0,
|
626 |
+
"MODEL"
|
627 |
+
],
|
628 |
+
[
|
629 |
+
131,
|
630 |
+
45,
|
631 |
+
0,
|
632 |
+
33,
|
633 |
+
0,
|
634 |
+
"MODEL"
|
635 |
+
],
|
636 |
+
[
|
637 |
+
132,
|
638 |
+
33,
|
639 |
+
0,
|
640 |
+
3,
|
641 |
+
0,
|
642 |
+
"MODEL"
|
643 |
+
]
|
644 |
+
],
|
645 |
+
"groups": [],
|
646 |
+
"config": {},
|
647 |
+
"extra": {},
|
648 |
+
"version": 0.4
|
649 |
+
}
|
PuLID_ComfyUI/examples/PuLID_simple.json
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"last_node_id": 45,
|
3 |
+
"last_link_id": 133,
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": 8,
|
7 |
+
"type": "VAEDecode",
|
8 |
+
"pos": [
|
9 |
+
1210,
|
10 |
+
-270
|
11 |
+
],
|
12 |
+
"size": {
|
13 |
+
"0": 140,
|
14 |
+
"1": 46
|
15 |
+
},
|
16 |
+
"flags": {},
|
17 |
+
"order": 10,
|
18 |
+
"mode": 0,
|
19 |
+
"inputs": [
|
20 |
+
{
|
21 |
+
"name": "samples",
|
22 |
+
"type": "LATENT",
|
23 |
+
"link": 7
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"name": "vae",
|
27 |
+
"type": "VAE",
|
28 |
+
"link": 8
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"name": "IMAGE",
|
34 |
+
"type": "IMAGE",
|
35 |
+
"links": [
|
36 |
+
10
|
37 |
+
],
|
38 |
+
"slot_index": 0
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"properties": {
|
42 |
+
"Node name for S&R": "VAEDecode"
|
43 |
+
}
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"id": 19,
|
47 |
+
"type": "PulidEvaClipLoader",
|
48 |
+
"pos": [
|
49 |
+
130,
|
50 |
+
120
|
51 |
+
],
|
52 |
+
"size": {
|
53 |
+
"0": 140,
|
54 |
+
"1": 26
|
55 |
+
},
|
56 |
+
"flags": {},
|
57 |
+
"order": 0,
|
58 |
+
"mode": 0,
|
59 |
+
"outputs": [
|
60 |
+
{
|
61 |
+
"name": "EVA_CLIP",
|
62 |
+
"type": "EVA_CLIP",
|
63 |
+
"links": [
|
64 |
+
81
|
65 |
+
],
|
66 |
+
"shape": 3,
|
67 |
+
"slot_index": 0
|
68 |
+
}
|
69 |
+
],
|
70 |
+
"properties": {
|
71 |
+
"Node name for S&R": "PulidEvaClipLoader"
|
72 |
+
}
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"id": 17,
|
76 |
+
"type": "PulidInsightFaceLoader",
|
77 |
+
"pos": [
|
78 |
+
60,
|
79 |
+
190
|
80 |
+
],
|
81 |
+
"size": {
|
82 |
+
"0": 210,
|
83 |
+
"1": 58
|
84 |
+
},
|
85 |
+
"flags": {},
|
86 |
+
"order": 1,
|
87 |
+
"mode": 0,
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"name": "FACEANALYSIS",
|
91 |
+
"type": "FACEANALYSIS",
|
92 |
+
"links": [
|
93 |
+
82
|
94 |
+
],
|
95 |
+
"shape": 3,
|
96 |
+
"slot_index": 0
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"properties": {
|
100 |
+
"Node name for S&R": "PulidInsightFaceLoader"
|
101 |
+
},
|
102 |
+
"widgets_values": [
|
103 |
+
"CPU"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"id": 16,
|
108 |
+
"type": "PulidModelLoader",
|
109 |
+
"pos": [
|
110 |
+
-20,
|
111 |
+
20
|
112 |
+
],
|
113 |
+
"size": {
|
114 |
+
"0": 304.0072021484375,
|
115 |
+
"1": 58
|
116 |
+
},
|
117 |
+
"flags": {},
|
118 |
+
"order": 2,
|
119 |
+
"mode": 0,
|
120 |
+
"outputs": [
|
121 |
+
{
|
122 |
+
"name": "PULID",
|
123 |
+
"type": "PULID",
|
124 |
+
"links": [
|
125 |
+
117
|
126 |
+
],
|
127 |
+
"shape": 3,
|
128 |
+
"slot_index": 0
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"properties": {
|
132 |
+
"Node name for S&R": "PulidModelLoader"
|
133 |
+
},
|
134 |
+
"widgets_values": [
|
135 |
+
"ip-adapter_pulid_sdxl_fp16.safetensors"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"id": 5,
|
140 |
+
"type": "EmptyLatentImage",
|
141 |
+
"pos": [
|
142 |
+
350,
|
143 |
+
265
|
144 |
+
],
|
145 |
+
"size": {
|
146 |
+
"0": 315,
|
147 |
+
"1": 106
|
148 |
+
},
|
149 |
+
"flags": {},
|
150 |
+
"order": 3,
|
151 |
+
"mode": 0,
|
152 |
+
"outputs": [
|
153 |
+
{
|
154 |
+
"name": "LATENT",
|
155 |
+
"type": "LATENT",
|
156 |
+
"links": [
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"slot_index": 0
|
160 |
+
}
|
161 |
+
],
|
162 |
+
"properties": {
|
163 |
+
"Node name for S&R": "EmptyLatentImage"
|
164 |
+
},
|
165 |
+
"widgets_values": [
|
166 |
+
768,
|
167 |
+
1024,
|
168 |
+
1
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"id": 33,
|
173 |
+
"type": "ApplyPulid",
|
174 |
+
"pos": [
|
175 |
+
350,
|
176 |
+
-10
|
177 |
+
],
|
178 |
+
"size": {
|
179 |
+
"0": 315,
|
180 |
+
"1": 210
|
181 |
+
},
|
182 |
+
"flags": {},
|
183 |
+
"order": 6,
|
184 |
+
"mode": 0,
|
185 |
+
"inputs": [
|
186 |
+
{
|
187 |
+
"name": "model",
|
188 |
+
"type": "MODEL",
|
189 |
+
"link": 133
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"name": "pulid",
|
193 |
+
"type": "PULID",
|
194 |
+
"link": 117
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"name": "eva_clip",
|
198 |
+
"type": "EVA_CLIP",
|
199 |
+
"link": 81
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"name": "face_analysis",
|
203 |
+
"type": "FACEANALYSIS",
|
204 |
+
"link": 82
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"name": "image",
|
208 |
+
"type": "IMAGE",
|
209 |
+
"link": 114
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"outputs": [
|
213 |
+
{
|
214 |
+
"name": "MODEL",
|
215 |
+
"type": "MODEL",
|
216 |
+
"links": [
|
217 |
+
132
|
218 |
+
],
|
219 |
+
"shape": 3,
|
220 |
+
"slot_index": 0
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"properties": {
|
224 |
+
"Node name for S&R": "ApplyPulid"
|
225 |
+
},
|
226 |
+
"widgets_values": [
|
227 |
+
"fidelity",
|
228 |
+
0.8,
|
229 |
+
0,
|
230 |
+
1
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"id": 23,
|
235 |
+
"type": "CLIPTextEncode",
|
236 |
+
"pos": [
|
237 |
+
330,
|
238 |
+
-260
|
239 |
+
],
|
240 |
+
"size": {
|
241 |
+
"0": 334.8077697753906,
|
242 |
+
"1": 189.35675048828125
|
243 |
+
},
|
244 |
+
"flags": {},
|
245 |
+
"order": 8,
|
246 |
+
"mode": 0,
|
247 |
+
"inputs": [
|
248 |
+
{
|
249 |
+
"name": "clip",
|
250 |
+
"type": "CLIP",
|
251 |
+
"link": 94
|
252 |
+
}
|
253 |
+
],
|
254 |
+
"outputs": [
|
255 |
+
{
|
256 |
+
"name": "CONDITIONING",
|
257 |
+
"type": "CONDITIONING",
|
258 |
+
"links": [
|
259 |
+
34
|
260 |
+
],
|
261 |
+
"shape": 3,
|
262 |
+
"slot_index": 0
|
263 |
+
}
|
264 |
+
],
|
265 |
+
"properties": {
|
266 |
+
"Node name for S&R": "CLIPTextEncode"
|
267 |
+
},
|
268 |
+
"widgets_values": [
|
269 |
+
"blurry, malformed, low quality, worst quality, artifacts, noise, text, watermark, glitch, deformed, ugly, horror, ill"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"id": 22,
|
274 |
+
"type": "CLIPTextEncode",
|
275 |
+
"pos": [
|
276 |
+
340,
|
277 |
+
-430
|
278 |
+
],
|
279 |
+
"size": {
|
280 |
+
"0": 315.23089599609375,
|
281 |
+
"1": 113.96450805664062
|
282 |
+
},
|
283 |
+
"flags": {},
|
284 |
+
"order": 7,
|
285 |
+
"mode": 0,
|
286 |
+
"inputs": [
|
287 |
+
{
|
288 |
+
"name": "clip",
|
289 |
+
"type": "CLIP",
|
290 |
+
"link": 93
|
291 |
+
}
|
292 |
+
],
|
293 |
+
"outputs": [
|
294 |
+
{
|
295 |
+
"name": "CONDITIONING",
|
296 |
+
"type": "CONDITIONING",
|
297 |
+
"links": [
|
298 |
+
35
|
299 |
+
],
|
300 |
+
"shape": 3,
|
301 |
+
"slot_index": 0
|
302 |
+
}
|
303 |
+
],
|
304 |
+
"properties": {
|
305 |
+
"Node name for S&R": "CLIPTextEncode"
|
306 |
+
},
|
307 |
+
"widgets_values": [
|
308 |
+
"closeup portrait, cyberpunk, cinematic, hoodie, purple hair, highly detailed, 4k, high resolution"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"id": 3,
|
313 |
+
"type": "KSampler",
|
314 |
+
"pos": [
|
315 |
+
800,
|
316 |
+
-270
|
317 |
+
],
|
318 |
+
"size": {
|
319 |
+
"0": 341.2750244140625,
|
320 |
+
"1": 262
|
321 |
+
},
|
322 |
+
"flags": {},
|
323 |
+
"order": 9,
|
324 |
+
"mode": 0,
|
325 |
+
"inputs": [
|
326 |
+
{
|
327 |
+
"name": "model",
|
328 |
+
"type": "MODEL",
|
329 |
+
"link": 132
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"name": "positive",
|
333 |
+
"type": "CONDITIONING",
|
334 |
+
"link": 35
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"name": "negative",
|
338 |
+
"type": "CONDITIONING",
|
339 |
+
"link": 34
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"name": "latent_image",
|
343 |
+
"type": "LATENT",
|
344 |
+
"link": 2
|
345 |
+
}
|
346 |
+
],
|
347 |
+
"outputs": [
|
348 |
+
{
|
349 |
+
"name": "LATENT",
|
350 |
+
"type": "LATENT",
|
351 |
+
"links": [
|
352 |
+
7
|
353 |
+
],
|
354 |
+
"slot_index": 0
|
355 |
+
}
|
356 |
+
],
|
357 |
+
"properties": {
|
358 |
+
"Node name for S&R": "KSampler"
|
359 |
+
},
|
360 |
+
"widgets_values": [
|
361 |
+
51,
|
362 |
+
"fixed",
|
363 |
+
30,
|
364 |
+
6,
|
365 |
+
"dpmpp_2m",
|
366 |
+
"sgm_uniform",
|
367 |
+
1
|
368 |
+
]
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"id": 12,
|
372 |
+
"type": "LoadImage",
|
373 |
+
"pos": [
|
374 |
+
-115,
|
375 |
+
310
|
376 |
+
],
|
377 |
+
"size": {
|
378 |
+
"0": 404.07366943359375,
|
379 |
+
"1": 496.2817077636719
|
380 |
+
},
|
381 |
+
"flags": {},
|
382 |
+
"order": 4,
|
383 |
+
"mode": 0,
|
384 |
+
"outputs": [
|
385 |
+
{
|
386 |
+
"name": "IMAGE",
|
387 |
+
"type": "IMAGE",
|
388 |
+
"links": [
|
389 |
+
114
|
390 |
+
],
|
391 |
+
"shape": 3,
|
392 |
+
"slot_index": 0
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"name": "MASK",
|
396 |
+
"type": "MASK",
|
397 |
+
"links": null,
|
398 |
+
"shape": 3
|
399 |
+
}
|
400 |
+
],
|
401 |
+
"properties": {
|
402 |
+
"Node name for S&R": "LoadImage"
|
403 |
+
},
|
404 |
+
"widgets_values": [
|
405 |
+
"monalisa.png",
|
406 |
+
"image"
|
407 |
+
]
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"id": 4,
|
411 |
+
"type": "CheckpointLoaderSimple",
|
412 |
+
"pos": [
|
413 |
+
-97,
|
414 |
+
-265
|
415 |
+
],
|
416 |
+
"size": {
|
417 |
+
"0": 319.03692626953125,
|
418 |
+
"1": 101.3391342163086
|
419 |
+
},
|
420 |
+
"flags": {},
|
421 |
+
"order": 5,
|
422 |
+
"mode": 0,
|
423 |
+
"outputs": [
|
424 |
+
{
|
425 |
+
"name": "MODEL",
|
426 |
+
"type": "MODEL",
|
427 |
+
"links": [
|
428 |
+
133
|
429 |
+
],
|
430 |
+
"slot_index": 0
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"name": "CLIP",
|
434 |
+
"type": "CLIP",
|
435 |
+
"links": [
|
436 |
+
93,
|
437 |
+
94
|
438 |
+
],
|
439 |
+
"slot_index": 1
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"name": "VAE",
|
443 |
+
"type": "VAE",
|
444 |
+
"links": [
|
445 |
+
8
|
446 |
+
],
|
447 |
+
"slot_index": 2
|
448 |
+
}
|
449 |
+
],
|
450 |
+
"properties": {
|
451 |
+
"Node name for S&R": "CheckpointLoaderSimple"
|
452 |
+
},
|
453 |
+
"widgets_values": [
|
454 |
+
"sdxl/Proteus-RunDiffusion.safetensors"
|
455 |
+
]
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"id": 10,
|
459 |
+
"type": "PreviewImage",
|
460 |
+
"pos": [
|
461 |
+
1181,
|
462 |
+
-162
|
463 |
+
],
|
464 |
+
"size": [
|
465 |
+
705.6038401281248,
|
466 |
+
950.4616015812499
|
467 |
+
],
|
468 |
+
"flags": {},
|
469 |
+
"order": 11,
|
470 |
+
"mode": 0,
|
471 |
+
"inputs": [
|
472 |
+
{
|
473 |
+
"name": "images",
|
474 |
+
"type": "IMAGE",
|
475 |
+
"link": 10
|
476 |
+
}
|
477 |
+
],
|
478 |
+
"properties": {
|
479 |
+
"Node name for S&R": "PreviewImage"
|
480 |
+
}
|
481 |
+
}
|
482 |
+
],
|
483 |
+
"links": [
|
484 |
+
[
|
485 |
+
2,
|
486 |
+
5,
|
487 |
+
0,
|
488 |
+
3,
|
489 |
+
3,
|
490 |
+
"LATENT"
|
491 |
+
],
|
492 |
+
[
|
493 |
+
7,
|
494 |
+
3,
|
495 |
+
0,
|
496 |
+
8,
|
497 |
+
0,
|
498 |
+
"LATENT"
|
499 |
+
],
|
500 |
+
[
|
501 |
+
8,
|
502 |
+
4,
|
503 |
+
2,
|
504 |
+
8,
|
505 |
+
1,
|
506 |
+
"VAE"
|
507 |
+
],
|
508 |
+
[
|
509 |
+
10,
|
510 |
+
8,
|
511 |
+
0,
|
512 |
+
10,
|
513 |
+
0,
|
514 |
+
"IMAGE"
|
515 |
+
],
|
516 |
+
[
|
517 |
+
34,
|
518 |
+
23,
|
519 |
+
0,
|
520 |
+
3,
|
521 |
+
2,
|
522 |
+
"CONDITIONING"
|
523 |
+
],
|
524 |
+
[
|
525 |
+
35,
|
526 |
+
22,
|
527 |
+
0,
|
528 |
+
3,
|
529 |
+
1,
|
530 |
+
"CONDITIONING"
|
531 |
+
],
|
532 |
+
[
|
533 |
+
81,
|
534 |
+
19,
|
535 |
+
0,
|
536 |
+
33,
|
537 |
+
2,
|
538 |
+
"EVA_CLIP"
|
539 |
+
],
|
540 |
+
[
|
541 |
+
82,
|
542 |
+
17,
|
543 |
+
0,
|
544 |
+
33,
|
545 |
+
3,
|
546 |
+
"FACEANALYSIS"
|
547 |
+
],
|
548 |
+
[
|
549 |
+
93,
|
550 |
+
4,
|
551 |
+
1,
|
552 |
+
22,
|
553 |
+
0,
|
554 |
+
"CLIP"
|
555 |
+
],
|
556 |
+
[
|
557 |
+
94,
|
558 |
+
4,
|
559 |
+
1,
|
560 |
+
23,
|
561 |
+
0,
|
562 |
+
"CLIP"
|
563 |
+
],
|
564 |
+
[
|
565 |
+
114,
|
566 |
+
12,
|
567 |
+
0,
|
568 |
+
33,
|
569 |
+
4,
|
570 |
+
"IMAGE"
|
571 |
+
],
|
572 |
+
[
|
573 |
+
117,
|
574 |
+
16,
|
575 |
+
0,
|
576 |
+
33,
|
577 |
+
1,
|
578 |
+
"PULID"
|
579 |
+
],
|
580 |
+
[
|
581 |
+
132,
|
582 |
+
33,
|
583 |
+
0,
|
584 |
+
3,
|
585 |
+
0,
|
586 |
+
"MODEL"
|
587 |
+
],
|
588 |
+
[
|
589 |
+
133,
|
590 |
+
4,
|
591 |
+
0,
|
592 |
+
33,
|
593 |
+
0,
|
594 |
+
"MODEL"
|
595 |
+
]
|
596 |
+
],
|
597 |
+
"groups": [],
|
598 |
+
"config": {},
|
599 |
+
"extra": {},
|
600 |
+
"version": 0.4
|
601 |
+
}
|
PuLID_ComfyUI/examples/pulid_wf.jpg
ADDED
![]() |
Git LFS Details
|
PuLID_ComfyUI/pulid.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torchvision.transforms as T
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import os
|
6 |
+
import math
|
7 |
+
import folder_paths
|
8 |
+
import comfy.utils
|
9 |
+
from insightface.app import FaceAnalysis
|
10 |
+
from facexlib.parsing import init_parsing_model
|
11 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
12 |
+
from comfy.ldm.modules.attention import optimized_attention
|
13 |
+
|
14 |
+
from .eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
15 |
+
|
16 |
+
from .encoders import IDEncoder
|
17 |
+
|
18 |
+
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
|
19 |
+
|
20 |
+
MODELS_DIR = os.path.join(folder_paths.models_dir, "pulid")
|
21 |
+
if "pulid" not in folder_paths.folder_names_and_paths:
|
22 |
+
current_paths = [MODELS_DIR]
|
23 |
+
else:
|
24 |
+
current_paths, _ = folder_paths.folder_names_and_paths["pulid"]
|
25 |
+
folder_paths.folder_names_and_paths["pulid"] = (current_paths, folder_paths.supported_pt_extensions)
|
26 |
+
|
27 |
+
class PulidModel(nn.Module):
|
28 |
+
def __init__(self, model):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.model = model
|
32 |
+
self.image_proj_model = self.init_id_adapter()
|
33 |
+
self.image_proj_model.load_state_dict(model["image_proj"])
|
34 |
+
self.ip_layers = To_KV(model["ip_adapter"])
|
35 |
+
|
36 |
+
def init_id_adapter(self):
|
37 |
+
image_proj_model = IDEncoder()
|
38 |
+
return image_proj_model
|
39 |
+
|
40 |
+
def get_image_embeds(self, face_embed, clip_embeds):
|
41 |
+
embeds = self.image_proj_model(face_embed, clip_embeds)
|
42 |
+
return embeds
|
43 |
+
|
44 |
+
class To_KV(nn.Module):
|
45 |
+
def __init__(self, state_dict):
|
46 |
+
super().__init__()
|
47 |
+
|
48 |
+
self.to_kvs = nn.ModuleDict()
|
49 |
+
for key, value in state_dict.items():
|
50 |
+
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False)
|
51 |
+
self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value
|
52 |
+
|
53 |
+
def tensor_to_image(tensor):
|
54 |
+
image = tensor.mul(255).clamp(0, 255).byte().cpu()
|
55 |
+
image = image[..., [2, 1, 0]].numpy()
|
56 |
+
return image
|
57 |
+
|
58 |
+
def image_to_tensor(image):
|
59 |
+
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1)
|
60 |
+
tensor = tensor[..., [2, 1, 0]]
|
61 |
+
return tensor
|
62 |
+
|
63 |
+
def tensor_to_size(source, dest_size):
|
64 |
+
if isinstance(dest_size, torch.Tensor):
|
65 |
+
dest_size = dest_size.shape[0]
|
66 |
+
source_size = source.shape[0]
|
67 |
+
|
68 |
+
if source_size < dest_size:
|
69 |
+
shape = [dest_size - source_size] + [1]*(source.dim()-1)
|
70 |
+
source = torch.cat((source, source[-1:].repeat(shape)), dim=0)
|
71 |
+
elif source_size > dest_size:
|
72 |
+
source = source[:dest_size]
|
73 |
+
|
74 |
+
return source
|
75 |
+
|
76 |
+
def set_model_patch_replace(model, patch_kwargs, key):
|
77 |
+
to = model.model_options["transformer_options"].copy()
|
78 |
+
if "patches_replace" not in to:
|
79 |
+
to["patches_replace"] = {}
|
80 |
+
else:
|
81 |
+
to["patches_replace"] = to["patches_replace"].copy()
|
82 |
+
|
83 |
+
if "attn2" not in to["patches_replace"]:
|
84 |
+
to["patches_replace"]["attn2"] = {}
|
85 |
+
else:
|
86 |
+
to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy()
|
87 |
+
|
88 |
+
if key not in to["patches_replace"]["attn2"]:
|
89 |
+
to["patches_replace"]["attn2"][key] = Attn2Replace(pulid_attention, **patch_kwargs)
|
90 |
+
model.model_options["transformer_options"] = to
|
91 |
+
else:
|
92 |
+
to["patches_replace"]["attn2"][key].add(pulid_attention, **patch_kwargs)
|
93 |
+
|
94 |
+
class Attn2Replace:
|
95 |
+
def __init__(self, callback=None, **kwargs):
|
96 |
+
self.callback = [callback]
|
97 |
+
self.kwargs = [kwargs]
|
98 |
+
|
99 |
+
def add(self, callback, **kwargs):
|
100 |
+
self.callback.append(callback)
|
101 |
+
self.kwargs.append(kwargs)
|
102 |
+
|
103 |
+
for key, value in kwargs.items():
|
104 |
+
setattr(self, key, value)
|
105 |
+
|
106 |
+
def __call__(self, q, k, v, extra_options):
|
107 |
+
dtype = q.dtype
|
108 |
+
out = optimized_attention(q, k, v, extra_options["n_heads"])
|
109 |
+
sigma = extra_options["sigmas"].detach().cpu()[0].item() if 'sigmas' in extra_options else 999999999.9
|
110 |
+
|
111 |
+
for i, callback in enumerate(self.callback):
|
112 |
+
if sigma <= self.kwargs[i]["sigma_start"] and sigma >= self.kwargs[i]["sigma_end"]:
|
113 |
+
out = out + callback(out, q, k, v, extra_options, **self.kwargs[i])
|
114 |
+
|
115 |
+
return out.to(dtype=dtype)
|
116 |
+
|
117 |
+
def pulid_attention(out, q, k, v, extra_options, module_key='', pulid=None, cond=None, uncond=None, weight=1.0, ortho=False, ortho_v2=False, mask=None, **kwargs):
|
118 |
+
k_key = module_key + "_to_k_ip"
|
119 |
+
v_key = module_key + "_to_v_ip"
|
120 |
+
|
121 |
+
dtype = q.dtype
|
122 |
+
seq_len = q.shape[1]
|
123 |
+
cond_or_uncond = extra_options["cond_or_uncond"]
|
124 |
+
b = q.shape[0]
|
125 |
+
batch_prompt = b // len(cond_or_uncond)
|
126 |
+
_, _, oh, ow = extra_options["original_shape"]
|
127 |
+
|
128 |
+
#conds = torch.cat([uncond.repeat(batch_prompt, 1, 1), cond.repeat(batch_prompt, 1, 1)], dim=0)
|
129 |
+
#zero_tensor = torch.zeros((conds.size(0), num_zero, conds.size(-1)), dtype=conds.dtype, device=conds.device)
|
130 |
+
#conds = torch.cat([conds, zero_tensor], dim=1)
|
131 |
+
#ip_k = pulid.ip_layers.to_kvs[k_key](conds)
|
132 |
+
#ip_v = pulid.ip_layers.to_kvs[v_key](conds)
|
133 |
+
|
134 |
+
k_cond = pulid.ip_layers.to_kvs[k_key](cond).repeat(batch_prompt, 1, 1)
|
135 |
+
k_uncond = pulid.ip_layers.to_kvs[k_key](uncond).repeat(batch_prompt, 1, 1)
|
136 |
+
v_cond = pulid.ip_layers.to_kvs[v_key](cond).repeat(batch_prompt, 1, 1)
|
137 |
+
v_uncond = pulid.ip_layers.to_kvs[v_key](uncond).repeat(batch_prompt, 1, 1)
|
138 |
+
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0)
|
139 |
+
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0)
|
140 |
+
|
141 |
+
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
|
142 |
+
|
143 |
+
if ortho:
|
144 |
+
out = out.to(dtype=torch.float32)
|
145 |
+
out_ip = out_ip.to(dtype=torch.float32)
|
146 |
+
projection = (torch.sum((out * out_ip), dim=-2, keepdim=True) / torch.sum((out * out), dim=-2, keepdim=True) * out)
|
147 |
+
orthogonal = out_ip - projection
|
148 |
+
out_ip = weight * orthogonal
|
149 |
+
elif ortho_v2:
|
150 |
+
out = out.to(dtype=torch.float32)
|
151 |
+
out_ip = out_ip.to(dtype=torch.float32)
|
152 |
+
attn_map = q @ ip_k.transpose(-2, -1)
|
153 |
+
attn_mean = attn_map.softmax(dim=-1).mean(dim=1, keepdim=True)
|
154 |
+
attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True)
|
155 |
+
projection = (torch.sum((out * out_ip), dim=-2, keepdim=True) / torch.sum((out * out), dim=-2, keepdim=True) * out)
|
156 |
+
orthogonal = out_ip + (attn_mean - 1) * projection
|
157 |
+
out_ip = weight * orthogonal
|
158 |
+
else:
|
159 |
+
out_ip = out_ip * weight
|
160 |
+
|
161 |
+
if mask is not None:
|
162 |
+
mask_h = oh / math.sqrt(oh * ow / seq_len)
|
163 |
+
mask_h = int(mask_h) + int((seq_len % int(mask_h)) != 0)
|
164 |
+
mask_w = seq_len // mask_h
|
165 |
+
|
166 |
+
mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1)
|
167 |
+
mask = tensor_to_size(mask, batch_prompt)
|
168 |
+
|
169 |
+
mask = mask.repeat(len(cond_or_uncond), 1, 1)
|
170 |
+
mask = mask.view(mask.shape[0], -1, 1).repeat(1, 1, out.shape[2])
|
171 |
+
|
172 |
+
# covers cases where extreme aspect ratios can cause the mask to have a wrong size
|
173 |
+
mask_len = mask_h * mask_w
|
174 |
+
if mask_len < seq_len:
|
175 |
+
pad_len = seq_len - mask_len
|
176 |
+
pad1 = pad_len // 2
|
177 |
+
pad2 = pad_len - pad1
|
178 |
+
mask = F.pad(mask, (0, 0, pad1, pad2), value=0.0)
|
179 |
+
elif mask_len > seq_len:
|
180 |
+
crop_start = (mask_len - seq_len) // 2
|
181 |
+
mask = mask[:, crop_start:crop_start+seq_len, :]
|
182 |
+
|
183 |
+
out_ip = out_ip * mask
|
184 |
+
|
185 |
+
return out_ip.to(dtype=dtype)
|
186 |
+
|
187 |
+
def to_gray(img):
|
188 |
+
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
|
189 |
+
x = x.repeat(1, 3, 1, 1)
|
190 |
+
return x
|
191 |
+
|
192 |
+
"""
|
193 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
194 |
+
Nodes
|
195 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
196 |
+
"""
|
197 |
+
|
198 |
+
class PulidModelLoader:
|
199 |
+
@classmethod
|
200 |
+
def INPUT_TYPES(s):
|
201 |
+
return {"required": { "pulid_file": (folder_paths.get_filename_list("pulid"), )}}
|
202 |
+
|
203 |
+
RETURN_TYPES = ("PULID",)
|
204 |
+
FUNCTION = "load_model"
|
205 |
+
CATEGORY = "pulid"
|
206 |
+
|
207 |
+
def load_model(self, pulid_file):
|
208 |
+
ckpt_path = folder_paths.get_full_path("pulid", pulid_file)
|
209 |
+
|
210 |
+
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
211 |
+
|
212 |
+
if ckpt_path.lower().endswith(".safetensors"):
|
213 |
+
st_model = {"image_proj": {}, "ip_adapter": {}}
|
214 |
+
for key in model.keys():
|
215 |
+
if key.startswith("image_proj."):
|
216 |
+
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
|
217 |
+
elif key.startswith("ip_adapter."):
|
218 |
+
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
|
219 |
+
model = st_model
|
220 |
+
|
221 |
+
# Also initialize the model, takes longer to load but then it doesn't have to be done every time you change parameters in the apply node
|
222 |
+
model = PulidModel(model)
|
223 |
+
|
224 |
+
return (model,)
|
225 |
+
|
226 |
+
class PulidInsightFaceLoader:
|
227 |
+
@classmethod
|
228 |
+
def INPUT_TYPES(s):
|
229 |
+
return {
|
230 |
+
"required": {
|
231 |
+
"provider": (["CPU", "CUDA", "ROCM"], ),
|
232 |
+
},
|
233 |
+
}
|
234 |
+
|
235 |
+
RETURN_TYPES = ("FACEANALYSIS",)
|
236 |
+
FUNCTION = "load_insightface"
|
237 |
+
CATEGORY = "pulid"
|
238 |
+
|
239 |
+
def load_insightface(self, provider):
|
240 |
+
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l
|
241 |
+
model.prepare(ctx_id=0, det_size=(640, 640))
|
242 |
+
|
243 |
+
return (model,)
|
244 |
+
|
245 |
+
class PulidEvaClipLoader:
|
246 |
+
@classmethod
|
247 |
+
def INPUT_TYPES(s):
|
248 |
+
return {
|
249 |
+
"required": {},
|
250 |
+
}
|
251 |
+
|
252 |
+
RETURN_TYPES = ("EVA_CLIP",)
|
253 |
+
FUNCTION = "load_eva_clip"
|
254 |
+
CATEGORY = "pulid"
|
255 |
+
|
256 |
+
def load_eva_clip(self):
|
257 |
+
from .eva_clip.factory import create_model_and_transforms
|
258 |
+
|
259 |
+
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
|
260 |
+
|
261 |
+
model = model.visual
|
262 |
+
|
263 |
+
eva_transform_mean = getattr(model, 'image_mean', OPENAI_DATASET_MEAN)
|
264 |
+
eva_transform_std = getattr(model, 'image_std', OPENAI_DATASET_STD)
|
265 |
+
if not isinstance(eva_transform_mean, (list, tuple)):
|
266 |
+
model["image_mean"] = (eva_transform_mean,) * 3
|
267 |
+
if not isinstance(eva_transform_std, (list, tuple)):
|
268 |
+
model["image_std"] = (eva_transform_std,) * 3
|
269 |
+
|
270 |
+
return (model,)
|
271 |
+
|
272 |
+
|
273 |
+
class ApplyPulid:
|
274 |
+
@classmethod
|
275 |
+
def INPUT_TYPES(s):
|
276 |
+
return {
|
277 |
+
"required": {
|
278 |
+
"model": ("MODEL", ),
|
279 |
+
"pulid": ("PULID", ),
|
280 |
+
"eva_clip": ("EVA_CLIP", ),
|
281 |
+
"face_analysis": ("FACEANALYSIS", ),
|
282 |
+
"image": ("IMAGE", ),
|
283 |
+
"method": (["fidelity", "style", "neutral"],),
|
284 |
+
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }),
|
285 |
+
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
286 |
+
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
287 |
+
},
|
288 |
+
"optional": {
|
289 |
+
"attn_mask": ("MASK", ),
|
290 |
+
},
|
291 |
+
}
|
292 |
+
|
293 |
+
RETURN_TYPES = ("MODEL",)
|
294 |
+
FUNCTION = "apply_pulid"
|
295 |
+
CATEGORY = "pulid"
|
296 |
+
|
297 |
+
def apply_pulid(self, model, pulid, eva_clip, face_analysis, image, weight, start_at, end_at, method=None, noise=0.0, fidelity=None, projection=None, attn_mask=None):
|
298 |
+
work_model = model.clone()
|
299 |
+
|
300 |
+
device = comfy.model_management.get_torch_device()
|
301 |
+
dtype = comfy.model_management.unet_dtype()
|
302 |
+
if dtype not in [torch.float32, torch.float16, torch.bfloat16]:
|
303 |
+
dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32
|
304 |
+
|
305 |
+
eva_clip.to(device, dtype=dtype)
|
306 |
+
pulid_model = pulid.to(device, dtype=dtype)
|
307 |
+
|
308 |
+
if attn_mask is not None:
|
309 |
+
if attn_mask.dim() > 3:
|
310 |
+
attn_mask = attn_mask.squeeze(-1)
|
311 |
+
elif attn_mask.dim() < 3:
|
312 |
+
attn_mask = attn_mask.unsqueeze(0)
|
313 |
+
attn_mask = attn_mask.to(device, dtype=dtype)
|
314 |
+
|
315 |
+
if method == "fidelity" or projection == "ortho_v2":
|
316 |
+
num_zero = 8
|
317 |
+
ortho = False
|
318 |
+
ortho_v2 = True
|
319 |
+
elif method == "style" or projection == "ortho":
|
320 |
+
num_zero = 16
|
321 |
+
ortho = True
|
322 |
+
ortho_v2 = False
|
323 |
+
else:
|
324 |
+
num_zero = 0
|
325 |
+
ortho = False
|
326 |
+
ortho_v2 = False
|
327 |
+
|
328 |
+
if fidelity is not None:
|
329 |
+
num_zero = fidelity
|
330 |
+
|
331 |
+
#face_analysis.det_model.input_size = (640,640)
|
332 |
+
image = tensor_to_image(image)
|
333 |
+
|
334 |
+
face_helper = FaceRestoreHelper(
|
335 |
+
upscale_factor=1,
|
336 |
+
face_size=512,
|
337 |
+
crop_ratio=(1, 1),
|
338 |
+
det_model='retinaface_resnet50',
|
339 |
+
save_ext='png',
|
340 |
+
device=device,
|
341 |
+
)
|
342 |
+
|
343 |
+
face_helper.face_parse = None
|
344 |
+
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device)
|
345 |
+
|
346 |
+
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
347 |
+
cond = []
|
348 |
+
uncond = []
|
349 |
+
|
350 |
+
for i in range(image.shape[0]):
|
351 |
+
# get insightface embeddings
|
352 |
+
iface_embeds = None
|
353 |
+
for size in [(size, size) for size in range(640, 256, -64)]:
|
354 |
+
face_analysis.det_model.input_size = size
|
355 |
+
face = face_analysis.get(image[i])
|
356 |
+
if face:
|
357 |
+
face = sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse=True)[-1]
|
358 |
+
iface_embeds = torch.from_numpy(face.embedding).unsqueeze(0).to(device, dtype=dtype)
|
359 |
+
break
|
360 |
+
else:
|
361 |
+
raise Exception('insightface: No face detected.')
|
362 |
+
|
363 |
+
# get eva_clip embeddings
|
364 |
+
face_helper.clean_all()
|
365 |
+
face_helper.read_image(image[i])
|
366 |
+
face_helper.get_face_landmarks_5(only_center_face=True)
|
367 |
+
face_helper.align_warp_face()
|
368 |
+
|
369 |
+
if len(face_helper.cropped_faces) == 0:
|
370 |
+
raise Exception('facexlib: No face detected.')
|
371 |
+
|
372 |
+
face = face_helper.cropped_faces[0]
|
373 |
+
face = image_to_tensor(face).unsqueeze(0).permute(0,3,1,2).to(device)
|
374 |
+
parsing_out = face_helper.face_parse(T.functional.normalize(face, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
375 |
+
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
376 |
+
bg = sum(parsing_out == i for i in bg_label).bool()
|
377 |
+
white_image = torch.ones_like(face)
|
378 |
+
face_features_image = torch.where(bg, white_image, to_gray(face))
|
379 |
+
# apparently MPS only supports NEAREST interpolation?
|
380 |
+
face_features_image = T.functional.resize(face_features_image, eva_clip.image_size, T.InterpolationMode.BICUBIC if 'cuda' in device.type else T.InterpolationMode.NEAREST).to(device, dtype=dtype)
|
381 |
+
face_features_image = T.functional.normalize(face_features_image, eva_clip.image_mean, eva_clip.image_std)
|
382 |
+
|
383 |
+
id_cond_vit, id_vit_hidden = eva_clip(face_features_image, return_all_features=False, return_hidden=True, shuffle=False)
|
384 |
+
id_cond_vit = id_cond_vit.to(device, dtype=dtype)
|
385 |
+
for idx in range(len(id_vit_hidden)):
|
386 |
+
id_vit_hidden[idx] = id_vit_hidden[idx].to(device, dtype=dtype)
|
387 |
+
|
388 |
+
id_cond_vit = torch.div(id_cond_vit, torch.norm(id_cond_vit, 2, 1, True))
|
389 |
+
|
390 |
+
# combine embeddings
|
391 |
+
id_cond = torch.cat([iface_embeds, id_cond_vit], dim=-1)
|
392 |
+
if noise == 0:
|
393 |
+
id_uncond = torch.zeros_like(id_cond)
|
394 |
+
else:
|
395 |
+
id_uncond = torch.rand_like(id_cond) * noise
|
396 |
+
id_vit_hidden_uncond = []
|
397 |
+
for idx in range(len(id_vit_hidden)):
|
398 |
+
if noise == 0:
|
399 |
+
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[idx]))
|
400 |
+
else:
|
401 |
+
id_vit_hidden_uncond.append(torch.rand_like(id_vit_hidden[idx]) * noise)
|
402 |
+
|
403 |
+
cond.append(pulid_model.get_image_embeds(id_cond, id_vit_hidden))
|
404 |
+
uncond.append(pulid_model.get_image_embeds(id_uncond, id_vit_hidden_uncond))
|
405 |
+
|
406 |
+
# average embeddings
|
407 |
+
cond = torch.cat(cond).to(device, dtype=dtype)
|
408 |
+
uncond = torch.cat(uncond).to(device, dtype=dtype)
|
409 |
+
if cond.shape[0] > 1:
|
410 |
+
cond = torch.mean(cond, dim=0, keepdim=True)
|
411 |
+
uncond = torch.mean(uncond, dim=0, keepdim=True)
|
412 |
+
|
413 |
+
if num_zero > 0:
|
414 |
+
if noise == 0:
|
415 |
+
zero_tensor = torch.zeros((cond.size(0), num_zero, cond.size(-1)), dtype=dtype, device=device)
|
416 |
+
else:
|
417 |
+
zero_tensor = torch.rand((cond.size(0), num_zero, cond.size(-1)), dtype=dtype, device=device) * noise
|
418 |
+
cond = torch.cat([cond, zero_tensor], dim=1)
|
419 |
+
uncond = torch.cat([uncond, zero_tensor], dim=1)
|
420 |
+
|
421 |
+
sigma_start = work_model.get_model_object("model_sampling").percent_to_sigma(start_at)
|
422 |
+
sigma_end = work_model.get_model_object("model_sampling").percent_to_sigma(end_at)
|
423 |
+
|
424 |
+
patch_kwargs = {
|
425 |
+
"pulid": pulid_model,
|
426 |
+
"weight": weight,
|
427 |
+
"cond": cond,
|
428 |
+
"uncond": uncond,
|
429 |
+
"sigma_start": sigma_start,
|
430 |
+
"sigma_end": sigma_end,
|
431 |
+
"ortho": ortho,
|
432 |
+
"ortho_v2": ortho_v2,
|
433 |
+
"mask": attn_mask,
|
434 |
+
}
|
435 |
+
|
436 |
+
number = 0
|
437 |
+
for id in [4,5,7,8]: # id of input_blocks that have cross attention
|
438 |
+
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
|
439 |
+
for index in block_indices:
|
440 |
+
patch_kwargs["module_key"] = str(number*2+1)
|
441 |
+
set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
|
442 |
+
number += 1
|
443 |
+
for id in range(6): # id of output_blocks that have cross attention
|
444 |
+
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
|
445 |
+
for index in block_indices:
|
446 |
+
patch_kwargs["module_key"] = str(number*2+1)
|
447 |
+
set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
|
448 |
+
number += 1
|
449 |
+
for index in range(10):
|
450 |
+
patch_kwargs["module_key"] = str(number*2+1)
|
451 |
+
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index))
|
452 |
+
number += 1
|
453 |
+
|
454 |
+
return (work_model,)
|
455 |
+
|
456 |
+
class ApplyPulidAdvanced(ApplyPulid):
|
457 |
+
@classmethod
|
458 |
+
def INPUT_TYPES(s):
|
459 |
+
return {
|
460 |
+
"required": {
|
461 |
+
"model": ("MODEL", ),
|
462 |
+
"pulid": ("PULID", ),
|
463 |
+
"eva_clip": ("EVA_CLIP", ),
|
464 |
+
"face_analysis": ("FACEANALYSIS", ),
|
465 |
+
"image": ("IMAGE", ),
|
466 |
+
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }),
|
467 |
+
"projection": (["ortho_v2", "ortho", "none"],),
|
468 |
+
"fidelity": ("INT", {"default": 8, "min": 0, "max": 32, "step": 1 }),
|
469 |
+
"noise": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.1 }),
|
470 |
+
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
471 |
+
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
472 |
+
},
|
473 |
+
"optional": {
|
474 |
+
"attn_mask": ("MASK", ),
|
475 |
+
},
|
476 |
+
}
|
477 |
+
|
478 |
+
NODE_CLASS_MAPPINGS = {
|
479 |
+
"PulidModelLoader": PulidModelLoader,
|
480 |
+
"PulidInsightFaceLoader": PulidInsightFaceLoader,
|
481 |
+
"PulidEvaClipLoader": PulidEvaClipLoader,
|
482 |
+
"ApplyPulid": ApplyPulid,
|
483 |
+
"ApplyPulidAdvanced": ApplyPulidAdvanced,
|
484 |
+
}
|
485 |
+
|
486 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
487 |
+
"PulidModelLoader": "Load PuLID Model",
|
488 |
+
"PulidInsightFaceLoader": "Load InsightFace (PuLID)",
|
489 |
+
"PulidEvaClipLoader": "Load Eva Clip (PuLID)",
|
490 |
+
"ApplyPulid": "Apply PuLID",
|
491 |
+
"ApplyPulidAdvanced": "Apply PuLID Advanced",
|
492 |
+
}
|
PuLID_ComfyUI/pyproject.toml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "pulid_comfyui"
|
3 |
+
description = "PuLID ComfyUI native implementation."
|
4 |
+
version = "1.0.0"
|
5 |
+
license = "LICENSE"
|
6 |
+
dependencies = ["facexlib", "insightface", "onnxruntime", "onnxruntime-gpu", "ftfy", "timm"]
|
7 |
+
|
8 |
+
[project.urls]
|
9 |
+
Repository = "https://github.com/cubiq/PuLID_ComfyUI"
|
10 |
+
# Used by Comfy Registry https://comfyregistry.org
|
11 |
+
|
12 |
+
[tool.comfy]
|
13 |
+
PublisherId = "matteo"
|
14 |
+
DisplayName = "PuLID_ComfyUI"
|
15 |
+
Icon = ""
|
PuLID_ComfyUI/requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
facexlib
|
2 |
+
insightface
|
3 |
+
onnxruntime
|
4 |
+
onnxruntime-gpu
|
5 |
+
ftfy
|
6 |
+
timm
|
example_node.py.example
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Example:
|
2 |
+
"""
|
3 |
+
A example node
|
4 |
+
|
5 |
+
Class methods
|
6 |
+
-------------
|
7 |
+
INPUT_TYPES (dict):
|
8 |
+
Tell the main program input parameters of nodes.
|
9 |
+
IS_CHANGED:
|
10 |
+
optional method to control when the node is re executed.
|
11 |
+
|
12 |
+
Attributes
|
13 |
+
----------
|
14 |
+
RETURN_TYPES (`tuple`):
|
15 |
+
The type of each element in the output tuple.
|
16 |
+
RETURN_NAMES (`tuple`):
|
17 |
+
Optional: The name of each output in the output tuple.
|
18 |
+
FUNCTION (`str`):
|
19 |
+
The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute()
|
20 |
+
OUTPUT_NODE ([`bool`]):
|
21 |
+
If this node is an output node that outputs a result/image from the graph. The SaveImage node is an example.
|
22 |
+
The backend iterates on these output nodes and tries to execute all their parents if their parent graph is properly connected.
|
23 |
+
Assumed to be False if not present.
|
24 |
+
CATEGORY (`str`):
|
25 |
+
The category the node should appear in the UI.
|
26 |
+
DEPRECATED (`bool`):
|
27 |
+
Indicates whether the node is deprecated. Deprecated nodes are hidden by default in the UI, but remain
|
28 |
+
functional in existing workflows that use them.
|
29 |
+
EXPERIMENTAL (`bool`):
|
30 |
+
Indicates whether the node is experimental. Experimental nodes are marked as such in the UI and may be subject to
|
31 |
+
significant changes or removal in future versions. Use with caution in production workflows.
|
32 |
+
execute(s) -> tuple || None:
|
33 |
+
The entry point method. The name of this method must be the same as the value of property `FUNCTION`.
|
34 |
+
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`.
|
35 |
+
"""
|
36 |
+
def __init__(self):
|
37 |
+
pass
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def INPUT_TYPES(s):
|
41 |
+
"""
|
42 |
+
Return a dictionary which contains config for all input fields.
|
43 |
+
Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
|
44 |
+
Input types "INT", "STRING" or "FLOAT" are special values for fields on the node.
|
45 |
+
The type can be a list for selection.
|
46 |
+
|
47 |
+
Returns: `dict`:
|
48 |
+
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
|
49 |
+
- Value input_fields (`dict`): Contains input fields config:
|
50 |
+
* Key field_name (`string`): Name of a entry-point method's argument
|
51 |
+
* Value field_config (`tuple`):
|
52 |
+
+ First value is a string indicate the type of field or a list for selection.
|
53 |
+
+ Second value is a config for type "INT", "STRING" or "FLOAT".
|
54 |
+
"""
|
55 |
+
return {
|
56 |
+
"required": {
|
57 |
+
"image": ("IMAGE",),
|
58 |
+
"int_field": ("INT", {
|
59 |
+
"default": 0,
|
60 |
+
"min": 0, #Minimum value
|
61 |
+
"max": 4096, #Maximum value
|
62 |
+
"step": 64, #Slider's step
|
63 |
+
"display": "number", # Cosmetic only: display as "number" or "slider"
|
64 |
+
"lazy": True # Will only be evaluated if check_lazy_status requires it
|
65 |
+
}),
|
66 |
+
"float_field": ("FLOAT", {
|
67 |
+
"default": 1.0,
|
68 |
+
"min": 0.0,
|
69 |
+
"max": 10.0,
|
70 |
+
"step": 0.01,
|
71 |
+
"round": 0.001, #The value representing the precision to round to, will be set to the step value by default. Can be set to False to disable rounding.
|
72 |
+
"display": "number",
|
73 |
+
"lazy": True
|
74 |
+
}),
|
75 |
+
"print_to_screen": (["enable", "disable"],),
|
76 |
+
"string_field": ("STRING", {
|
77 |
+
"multiline": False, #True if you want the field to look like the one on the ClipTextEncode node
|
78 |
+
"default": "Hello World!",
|
79 |
+
"lazy": True
|
80 |
+
}),
|
81 |
+
},
|
82 |
+
}
|
83 |
+
|
84 |
+
RETURN_TYPES = ("IMAGE",)
|
85 |
+
#RETURN_NAMES = ("image_output_name",)
|
86 |
+
|
87 |
+
FUNCTION = "test"
|
88 |
+
|
89 |
+
#OUTPUT_NODE = False
|
90 |
+
|
91 |
+
CATEGORY = "Example"
|
92 |
+
|
93 |
+
def check_lazy_status(self, image, string_field, int_field, float_field, print_to_screen):
|
94 |
+
"""
|
95 |
+
Return a list of input names that need to be evaluated.
|
96 |
+
|
97 |
+
This function will be called if there are any lazy inputs which have not yet been
|
98 |
+
evaluated. As long as you return at least one field which has not yet been evaluated
|
99 |
+
(and more exist), this function will be called again once the value of the requested
|
100 |
+
field is available.
|
101 |
+
|
102 |
+
Any evaluated inputs will be passed as arguments to this function. Any unevaluated
|
103 |
+
inputs will have the value None.
|
104 |
+
"""
|
105 |
+
if print_to_screen == "enable":
|
106 |
+
return ["int_field", "float_field", "string_field"]
|
107 |
+
else:
|
108 |
+
return []
|
109 |
+
|
110 |
+
def test(self, image, string_field, int_field, float_field, print_to_screen):
|
111 |
+
if print_to_screen == "enable":
|
112 |
+
print(f"""Your input contains:
|
113 |
+
string_field aka input text: {string_field}
|
114 |
+
int_field: {int_field}
|
115 |
+
float_field: {float_field}
|
116 |
+
""")
|
117 |
+
#do some processing on the image, in this example I just invert it
|
118 |
+
image = 1.0 - image
|
119 |
+
return (image,)
|
120 |
+
|
121 |
+
"""
|
122 |
+
The node will always be re executed if any of the inputs change but
|
123 |
+
this method can be used to force the node to execute again even when the inputs don't change.
|
124 |
+
You can make this node return a number or a string. This value will be compared to the one returned the last time the node was
|
125 |
+
executed, if it is different the node will be executed again.
|
126 |
+
This method is used in the core repo for the LoadImage node where they return the image hash as a string, if the image hash
|
127 |
+
changes between executions the LoadImage node is executed again.
|
128 |
+
"""
|
129 |
+
#@classmethod
|
130 |
+
#def IS_CHANGED(s, image, string_field, int_field, float_field, print_to_screen):
|
131 |
+
# return ""
|
132 |
+
|
133 |
+
# Set the web directory, any .js file in that directory will be loaded by the frontend as a frontend extension
|
134 |
+
# WEB_DIRECTORY = "./somejs"
|
135 |
+
|
136 |
+
|
137 |
+
# Add custom API routes, using router
|
138 |
+
from aiohttp import web
|
139 |
+
from server import PromptServer
|
140 |
+
|
141 |
+
@PromptServer.instance.routes.get("/hello")
|
142 |
+
async def get_hello(request):
|
143 |
+
return web.json_response("hello")
|
144 |
+
|
145 |
+
|
146 |
+
# A dictionary that contains all nodes you want to export with their names
|
147 |
+
# NOTE: names should be globally unique
|
148 |
+
NODE_CLASS_MAPPINGS = {
|
149 |
+
"Example": Example
|
150 |
+
}
|
151 |
+
|
152 |
+
# A dictionary that contains the friendly/humanly readable titles for the nodes
|
153 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
154 |
+
"Example": "Example Node"
|
155 |
+
}
|
rgthree-comfy/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Regis Gaughan, III (rgthree)
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
rgthree-comfy/README.md
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<h1 align="center">
|
2 |
+
rgthree-comfy
|
3 |
+
<br>
|
4 |
+
<sub><sup><i>Making ComfyUI more comfortable!</i></sup></sub>
|
5 |
+
<br>
|
6 |
+
</h1>
|
7 |
+
<p align="center">
|
8 |
+
<a href="#️-the-nodes">The Nodes</a> | <a href="#-improvements--features">Improvements & Features</a> | <a href="#-link-fixer">Link Fixer</a>
|
9 |
+
</p>
|
10 |
+
<hr>
|
11 |
+
|
12 |
+
A collection of nodes and improvements created while messing around with ComfyUI. I made them for myself to make my workflow cleaner, easier, and faster. You're welcome to try them out. But remember, I made them for my own use cases :)
|
13 |
+
|
14 |
+

|
15 |
+
|
16 |
+
# Get Started
|
17 |
+
|
18 |
+
## Install
|
19 |
+
|
20 |
+
1. Install the great [ComfyUi](https://github.com/comfyanonymous/ComfyUI).
|
21 |
+
2. Clone this repo into `custom_modules`:
|
22 |
+
```
|
23 |
+
cd ComfyUI/custom_nodes
|
24 |
+
git clone https://github.com/rgthree/rgthree-comfy.git
|
25 |
+
```
|
26 |
+
3. Start up ComfyUI.
|
27 |
+
|
28 |
+
## Settings
|
29 |
+
|
30 |
+
You can configure certain aspect of rgthree-comfy. For instance, perhaps a future ComfyUI change breaks rgthree-comfy, or you already have another extension that does something similar and you want to turn it off for rgthree-comfy.
|
31 |
+
|
32 |
+
You can get to rgthree-settings by right-clicking on the empty part of the graph, and selecting `rgthree-comfy > Settings (rgthree-comfy)` or by clicking the `rgthree-comfy settings` in the ComfyUI settings dialog.
|
33 |
+
|
34 |
+
_(Note, settings are stored in an `rgthree_config.json` in the `rgthree-comfy` directory. There are other advanced settings that can only be configured there; You can copy default settings from `rgthree_config.json.default` before `rgthree_config.json` before modifying)_.
|
35 |
+
|
36 |
+
<br>
|
37 |
+
|
38 |
+
# ✴️ The Nodes
|
39 |
+
|
40 |
+
Note, you can right-click on a bunch of the rgthree-comfy nodes and select `🛟 Node Help` menu item for in-app help when available.
|
41 |
+
|
42 |
+
## Seed
|
43 |
+
> An intuitive seed control node for ComfyUI that works very much like Automatic1111's seed control.
|
44 |
+
> <details>
|
45 |
+
> <summary>ℹ️ <i>See More Information</i></summary>
|
46 |
+
>
|
47 |
+
> - Set the seed value to "-1" to use a random seed every time
|
48 |
+
> - Set any other number in there to use as a static/fixed seed
|
49 |
+
> - Quick actions to randomize, or (re-)use the last queued seed.
|
50 |
+
> - Images metadata will store the seed value _(so dragging an image in, will have the seed field already fixed to its seed)_.
|
51 |
+
> - _Secret Features_: You can manually set the seed value to "-2" or "-3" to increment or decrement the last seed value. If there was not last seed value, it will randomly use on first.
|
52 |
+
>
|
53 |
+
> 
|
54 |
+
> </details>
|
55 |
+
|
56 |
+
|
57 |
+
## Reroute
|
58 |
+
> Keep your workflow neat with this much improved Reroute node with, like, actual rerouting with multiple directions and sizes.
|
59 |
+
> <details>
|
60 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
61 |
+
>
|
62 |
+
> - Use the right-click context menu to change the width, height and connection layout
|
63 |
+
> - Also toggle resizability (min size is 40x43 if resizing though), and title/type display.
|
64 |
+
>
|
65 |
+
> 
|
66 |
+
> </details>
|
67 |
+
|
68 |
+
## Bookmark (🔖)
|
69 |
+
> Place the bookmark node anywhere on screen to quickly navigate to that with a shortcut key.
|
70 |
+
> <details>
|
71 |
+
> <summary>ℹ️ <i>See More Information</i></summary>
|
72 |
+
>
|
73 |
+
> - Define the `shortcut_key` to press to go right to that bookmark node, anchored in the top left.
|
74 |
+
> - You can also define the zoom level as well!
|
75 |
+
> - Pro tip: `shortcut_key` can be multiple keys. For instance "alt + shift + !" would require
|
76 |
+
> pressing the alt key, the shift key, and the "!" (as in the "1" key, but with shift pressed)
|
77 |
+
> in order to trigger.
|
78 |
+
> </details>
|
79 |
+
|
80 |
+
|
81 |
+
## Context / Context Big
|
82 |
+
> Pass along in general flow properties, and merge in new data. Similar to some other node suites "pipes" but easier merging, is more easily interoperable with standard nodes by both combining and exploding all in a single node.
|
83 |
+
> <details>
|
84 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
85 |
+
>
|
86 |
+
> - Context and Context Big are backwards compatible with each other. That is, an input connected to a Context Big will be passed through the CONTEXT outputs through normal Context nodes and available as an output on either (or, Context Big if the output is only on that node, like "steps").
|
87 |
+
> - Pro Tip: When dragging a Context output over a nother node, hold down "ctrl" and release to automatically connect the other Context outputs to the hovered node.
|
88 |
+
> - Pro Tip: You can change between Context and Context Big nodes from the menu.
|
89 |
+
>
|
90 |
+
> 
|
91 |
+
> </details>
|
92 |
+
|
93 |
+
## Image Comparer
|
94 |
+
> The Image Comparer node compares two images on top of each other.
|
95 |
+
> <details>
|
96 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
97 |
+
>
|
98 |
+
> - **Note:** The right-click menu may show image options (Open Image, Save Image, etc.) which will correspond to the first image (image_a) if clicked on the left-half of the node, or the second image if on the right half of the node.
|
99 |
+
> - **Inputs:**
|
100 |
+
> - `image_a` _Required._ The first image to use to compare. If image_b is not supplied and image_a is a batch, the comparer will use the first two images of image_a.
|
101 |
+
> - `image_b` _Optional._ The second image to use to compare. Optional only if image_a is a batch with two images.
|
102 |
+
> - **Properties:** You can change the following properties (by right-clicking on the node, and select "Properties" or "Properties Panel" from the menu):
|
103 |
+
> - `comparer_mode` - Choose between "Slide" and "Click". Defaults to "Slide".
|
104 |
+
|
105 |
+
|
106 |
+
## Image Inset Crop
|
107 |
+
> The node that lets you crop an input image by either pixel value, or percentage value.
|
108 |
+
|
109 |
+
|
110 |
+
## Display Any
|
111 |
+
> Displays most any piece of text data from the backend _after execution_.
|
112 |
+
|
113 |
+
## Power Lora Loader
|
114 |
+
> A super-simply Lora Loader node that can load multiple Loras at once, and quick toggle each, all in an ultra-condensed node.
|
115 |
+
> <details>
|
116 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
117 |
+
>
|
118 |
+
> - Add as many Lora's as you would like by clicking the "+ Add Lora" button. There's no real limit!
|
119 |
+
> - Right-click on a Lora widget for special options to move the lora up or down
|
120 |
+
> _(no affect on image, just presentation)_, toggle it on/off, or delete the row all together.
|
121 |
+
> - from the properties, change the `Show Strengths` to choose between showing a single, simple
|
122 |
+
> strength value (which will be used for both model and clip), or a more advanced view with
|
123 |
+
> both model and clip strengths being modifiable.
|
124 |
+
> </details>
|
125 |
+
|
126 |
+
|
127 |
+
## ~~Lora Loader Stack~~
|
128 |
+
> _**Deprecated.** Used the `Power Lora Loader` instead._
|
129 |
+
>
|
130 |
+
> A simplified Lora Loader stack. Much like other suites, but more interoperable with standard inputs/outputs.
|
131 |
+
|
132 |
+
|
133 |
+
## Power Prompt
|
134 |
+
> Power up your prompt and get drop downs for adding your embeddings, loras, and even have saved prompt snippets.
|
135 |
+
> <details>
|
136 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
137 |
+
>
|
138 |
+
> - At the core, you can use Power Prompt almost as a String Primitive node with additional features of dropdowns for choosing your embeddings, and even loras, with no further processing. This will output just the raw `TEXT` to another node for any lora processing, CLIP Encoding, etc.
|
139 |
+
> - Connect a `CLIP` to the input to encode the text, with both the `CLIP` and `CONDITIONING` output right from the node.
|
140 |
+
> - Connect a `MODEL` to the input to parse and load any `<lora:...>` tags in the text automatically, without
|
141 |
+
> needing a separate Lora Loaders
|
142 |
+
> </details>
|
143 |
+
|
144 |
+
## Power Prompt - Simple
|
145 |
+
> Same as Power Prompt above, but without LORA support; made for a slightly cleaner negative prompt _(since negative prompts do not support loras)_.
|
146 |
+
|
147 |
+
## SDXL Power Prompt - Positive
|
148 |
+
> The SDXL sibling to the Power Prompt above. It contains the text_g and text_l as separate text inputs, as well a couple more input slots necessary to ensure proper clipe encoding. Combine with
|
149 |
+
|
150 |
+
## SDXL Power Prompt - Simple
|
151 |
+
> Like the non-SDXL `Power Prompt - Simple` node, this one is essentially the same as the SDXL Power Prompt but without lora support for either non-lora positive prompts or SDXL negative prompts _(since negative prompts do not support loras)_.
|
152 |
+
|
153 |
+
## SDXL Config
|
154 |
+
> Just some configuration fields for SDXL prompting. Honestly, could be used for non SDXL too.
|
155 |
+
|
156 |
+
## Context Switch / Context Switch Big
|
157 |
+
> A powerful node to branch your workflow. Works by choosing the first Context input that is not null/empty.
|
158 |
+
> <details>
|
159 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
160 |
+
>
|
161 |
+
> - Pass in several context nodes and the Context Switch will automatically choose the first non-null context to continue onward with.
|
162 |
+
> - Wondering how to toggle contexts to null? Use in conjuction with the **Fast Muter** or **Fast Groups Muter**
|
163 |
+
>
|
164 |
+
> </details>
|
165 |
+
|
166 |
+
## Any Switch
|
167 |
+
> A powerful node to similar to the Context Switch above, that chooses the first input that is not null/empty.
|
168 |
+
> <details>
|
169 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
170 |
+
>
|
171 |
+
> - Pass in several inmputs of the same type and the Any Switch will automatically choose the first non-null value to continue onward with.
|
172 |
+
> - Wondering how to toggle contexts to null? Use in conjuction with the **Fast Muter** or **Fast Groups Muter**
|
173 |
+
>
|
174 |
+
> </details>
|
175 |
+
|
176 |
+
|
177 |
+
## Fast Groups Muter
|
178 |
+
> The Fast Groups Muter is an input-less node that automatically collects all groups in your current workflow and allows you to quickly mute and unmute all nodes within the group.
|
179 |
+
> <details>
|
180 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
181 |
+
>
|
182 |
+
> - Groups will automatically be shown, though you can filter, sort and more from the **node Properties** _(by right-clicking on the node, and select "Properties" or "Properties Panel" from the menu)_. Properties include:
|
183 |
+
> - `matchColors` - Only add groups that match the provided colors. Can be ComfyUI colors (red, pale_blue) or hex codes (#a4d399). Multiple can be added, comma delimited.
|
184 |
+
> - `matchTitle` - Filter the list of toggles by title match (string match, or regular expression).
|
185 |
+
> - `showNav` - Add / remove a quick navigation arrow to take you to the group. (default: true)
|
186 |
+
> - `sort` - Sort the toggles' order by "alphanumeric", graph "position", or "custom alphabet". (default: "position")
|
187 |
+
> - `customSortAlphabet` - When the sort property is "custom alphabet" you can define the alphabet to use here, which will match the beginning of each group name and sort against it. If group titles do not match any custom alphabet entry, then they will be put after groups that do, ordered alphanumerically.
|
188 |
+
>
|
189 |
+
> This can be a list of single characters, like "zyxw..." or comma delimited strings for more control, like "sdxl,pro,sd,n,p".
|
190 |
+
>
|
191 |
+
> Note, when two group title match the same custom alphabet entry, the normal alphanumeric alphabet breaks the tie. For instance, a custom alphabet of "e,s,d" will order groups names like "SDXL, SEGS, Detailer" eventhough the custom alphabet has an "e" before "d" (where one may expect "SE" to be before "SD").
|
192 |
+
>
|
193 |
+
> To have "SEGS" appear before "SDXL" you can use longer strings. For instance, the custom alphabet value of "se,s,f" would work here.
|
194 |
+
> - `toggleRestriction` - Optionally, attempt to restrict the number of widgets that can be enabled to a maximum of one, or always one.
|
195 |
+
>
|
196 |
+
> _Note: If using "max one" or "always one" then this is only enforced when clicking a toggle on this node; if nodes within groups are changed outside of the initial toggle click, then these restriction will not be enforced, and could result in a state where more than one toggle is enabled. This could also happen if nodes are overlapped with multiple groups._
|
197 |
+
> </details>
|
198 |
+
|
199 |
+
## Fast Groups Bypasser
|
200 |
+
> _Same as **Fast Groups Muter** above, but sets the connected nodes to "Bypass" instead of "Mute"_
|
201 |
+
|
202 |
+
|
203 |
+
## Fast Muter
|
204 |
+
> A powerful 'control panel' node to quickly toggle connected nodes allowing them to quickly be muted or enabled
|
205 |
+
> <details>
|
206 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
207 |
+
>
|
208 |
+
> - Add a collection of all connected nodes allowing a single-spot as a "dashboard" to quickly enable and disable nodes. Two distinct nodes; one for "Muting" connected nodes, and one for "Bypassing" connected nodes.
|
209 |
+
> </details>
|
210 |
+
|
211 |
+
|
212 |
+
## Fast Bypasser
|
213 |
+
> Same as Fast Muter but sets the connected nodes to "Bypass"
|
214 |
+
|
215 |
+
## Fast Actions Button
|
216 |
+
> Oh boy, this node allows you to semi-automate connected nodes and/or ConfyUI.
|
217 |
+
> <details>
|
218 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
219 |
+
>
|
220 |
+
> - Connect nodes and, at the least, mute, bypass or enable them when the button is pressed.
|
221 |
+
> - Certain nodes expose additional actions. For instance, the `Seed` node you can set `Randomize Each Time` or `Use Last Queued Seed` when the button is pressed.
|
222 |
+
> - Also, from the node properties, set a shortcut key to toggle the button actions, without needing a click!
|
223 |
+
> </details>
|
224 |
+
|
225 |
+
|
226 |
+
## Node Collector
|
227 |
+
> Used to cleanup noodles, this will accept any number of input nodes and passes it along to another node.
|
228 |
+
>
|
229 |
+
> ⚠️ *Currently, this should really only be connected to **Fast Muter**, **Fast Bypasser**, or **Mute / Bypass Relay**.*
|
230 |
+
|
231 |
+
|
232 |
+
## Mute / Bypass Repeater
|
233 |
+
> A powerful node that will dispatch its Mute/Bypass/Active mode to all connected input nodes or, if in a group w/o any connected inputs, will dispatch its Mute/Bypass/Active mode to all nodes in that group.
|
234 |
+
> <details>
|
235 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
236 |
+
>
|
237 |
+
> - 💡 Pro Tip #1: Connect this node's output to a **Fast Muter** or **Fast Bypasser** to have a single toggle there that can mute/bypass/enable many nodes with one click.
|
238 |
+
>
|
239 |
+
> - 💡 Pro Tip #2: Connect a **Mute / Bypass Relay** node to this node's inputs to have the relay automatically dispatch a mute/bypass/enable change to the repeater.
|
240 |
+
> </details>
|
241 |
+
|
242 |
+
|
243 |
+
## Mute / Bypass Relay
|
244 |
+
> An advanced node that, when working with a **Mute / Bypass Repeater**, will relay its input nodes'
|
245 |
+
> modes (Mute, Bypass, or Active) to a connected repeater (which would then repeat that mode change
|
246 |
+
> to all of its inputs).
|
247 |
+
> <details>
|
248 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
249 |
+
>
|
250 |
+
> - When all connected input nodes are muted, the relay will set a connected repeater to mute (by
|
251 |
+
> default).
|
252 |
+
> - When all connected input nodes are bypassed, the relay will set a connected repeater to
|
253 |
+
> bypass (by default).
|
254 |
+
> - When _any_ connected input nodes are active, the relay will set a connected repeater to
|
255 |
+
> active (by default).
|
256 |
+
> - **Note:** If no inputs are connected, the relay will set a connected repeater to its mode
|
257 |
+
> _when its own mode is changed_. **Note**, if any inputs are connected, then the above bullets
|
258 |
+
> will occur and the Relay's mode does not matter.
|
259 |
+
> - **Pro Tip:** You can change which signals get sent on the above in the `Properties`.
|
260 |
+
> For instance, you could configure an inverse relay which will send a MUTE when any of its
|
261 |
+
> inputs are active (instead of sending an ACTIVE signal), and send an ACTIVE signal when all
|
262 |
+
> of its inputs are muted (instead of sending a MUTE signal), etc.
|
263 |
+
> </details>
|
264 |
+
|
265 |
+
|
266 |
+
## Random Unmuter
|
267 |
+
> An advanced node used to unmute one of its inputs randomly when the graph is queued (and, immediately mute it back).
|
268 |
+
> <details>
|
269 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
270 |
+
>
|
271 |
+
> - **Note:** All input nodes MUST be muted to start; if not this node will not randomly unmute another. (This is powerful, as the generated image can be dragged in and the chosen input will already by unmuted and work w/o any further action.)
|
272 |
+
> - **Tip:** Connect a Repeater's output to this nodes input and place that Repeater on a group without any other inputs, and it will mute/unmute the entire group.
|
273 |
+
> </details>
|
274 |
+
|
275 |
+
|
276 |
+
## Label
|
277 |
+
> A purely visual node, this allows you to add a floating label to your workflow.
|
278 |
+
> <details>
|
279 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
280 |
+
>
|
281 |
+
> - The text shown is the "Title" of the node and you can adjust the the font size, font family,
|
282 |
+
> font color, text alignment as well as a background color, padding, and background border
|
283 |
+
> radius from the node's properties. You can double-click the node to open the properties
|
284 |
+
> panel.
|
285 |
+
> - **Pro Tip #1:** You can add multiline text from the properties panel _(because ComfyUI let's
|
286 |
+
> you shift + enter there, only)._
|
287 |
+
> - **Pro Tip #2:** You can use ComfyUI's native "pin" option in the right-click menu to make the
|
288 |
+
> label stick to the workflow and clicks to "go through". You can right-click at any time to
|
289 |
+
> unpin.
|
290 |
+
> - **Pro Tip #3:** Color values are hexidecimal strings, like "#FFFFFF" for white, or "#660000"
|
291 |
+
> for dark red. You can supply a 7th & 8th value (or 5th if using shorthand) to create a
|
292 |
+
> transluscent color. For instance, "#FFFFFF88" is semi-transparent white.
|
293 |
+
> </details>
|
294 |
+
|
295 |
+
|
296 |
+
# Advanced Techniques
|
297 |
+
|
298 |
+
## First, a word on muting
|
299 |
+
|
300 |
+
A lot of the power of these nodes comes from *Muting*. Muting is the basis of correctly implementing multiple paths for a workflow utlizing the Context Switch node.
|
301 |
+
|
302 |
+
While other extensions may provide switches, they often get it wrong causing your workflow to do more work than is needed. While other switches may have a selector to choose which input to pass along, they don't stop the execution of the other inputs, which will result in wasted work. Instead, Context Switch works by choosing the first non-empty context to pass along and correctly Muting is one way to make a previous node empty, and causes no extra work to be done when set up correctly.
|
303 |
+
|
304 |
+
### To understand muting, is to understand the graph flow
|
305 |
+
|
306 |
+
Muting, and therefore using Switches, can often confuse people at first because it _feels_ like muting a node, or using a switch, should be able to stop or direct the _forward_ flow of the graph. However, this is not the case and, in fact, the graph actually starts working backwards.
|
307 |
+
|
308 |
+
If you have a workflow that has a path like `... > Context > KSampler > VAE Decode > Save Image` it may initially _feel_ like you should be able to mute that first Context node and the graph would stop there when moving forward and skip the rest of that workflow.
|
309 |
+
|
310 |
+
But you'll quickly find that will cause an error, becase the graph doesn't actually move forward. When a workflow is processed, it _first moves backwards_ starting at each "Output Node" (Preview Image, Save Image, even "Display String" etc.) and then walking backwards to all possible paths to get there.
|
311 |
+
|
312 |
+
So, with that `... > Context > KSampler > VAE Decode > Save Image` example from above, we actually want to mute the `Save Image` node to stop this path. Once we do, since the output node is gone, none of these nodes will be run.
|
313 |
+
|
314 |
+
Let's take a look at an example.
|
315 |
+
|
316 |
+
### A powerful combination: Using Context, Context Switch, & Fast Muter
|
317 |
+
|
318 |
+

|
319 |
+
|
320 |
+
1. Using the **Context Switch** (aqua colored in screenshot) feed context inputs in order of preference. In the workflow above, the `Upscale Out` context is first so, if that one is enabled, it will be chosen for the output. If not, the second input slot which comes from the context rerouted from above (before the Upscaler booth) will be chosen.
|
321 |
+
|
322 |
+
- Notice the `Upscale Preview` is _after_ the `Upscale Out` context node, using the image from it instead of the image from the upscale `VAE Decoder`. This is on purpose so, when we disable the `Upscale Out` context, none of the Upscaler nodes will run, saving precious GPU cycles. If we had the preview hooked up directly to the `VAE Decoder` the upscaler would always run to generate the preview, even if we had the `Upscale Out` context node disabled.
|
323 |
+
|
324 |
+
2. We can now disable the `Upscale Out` context node by _muting_ it. Highlighting it and pressing `ctrl + m` will work. By doing so, it's output will be None, and it will not pass anthing onto the further nodes. In the diagram you can see the `Upscale Preview` is red, but that's OK; there are no actual errors to stop execution.
|
325 |
+
|
326 |
+
3. Now, let's hook it up to the `Fast Muter` node. `The Fast Muter` node works as dashboard by adding quick toggles for any connected node (ignoring reroutes). In the diagram, we have both the `Upscaler Out` context node, and the `Save File` context node hooked up. So, we can quickly enable and disable those.
|
327 |
+
|
328 |
+
- The workflow seen here would be a common one where we can generate a handful of base previews cheaply with a random seed, and then choose one to upscale and save to disk.
|
329 |
+
|
330 |
+
4. Lastly, and optionally, you can see the `Node Collector`. Use it to clean up noodles if you want and connect it to the muter. You can connect anything to it, but doing so may break your workflow's execution.
|
331 |
+
|
332 |
+
<br>
|
333 |
+
|
334 |
+
# ⚡ Improvements & Features
|
335 |
+
|
336 |
+
rgthree-comfy adds several improvements, features, and optimizations to ComfyUI that are not directly tied to nodes.
|
337 |
+
|
338 |
+
## Progress Bar
|
339 |
+
> A minimal progress bar that run alongs the top of the app window that shows the queue size, the current progress of the a prompt execution (within the same window), and the progress of multi-step nodes as well.
|
340 |
+
>
|
341 |
+
> <i>You can remove/enable from rgthree-comfy settings, as well as configure the height/size.</i>
|
342 |
+
|
343 |
+
|
344 |
+
## ComfyUI Recursive Optimization
|
345 |
+
> An optimization to ComfyUI's recursive execution. Because rgthree-comfy nodes make it easy to build larger, more complex workflows, I (and others) started to hit a wall of poor execution times.
|
346 |
+
> <details>
|
347 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
348 |
+
>
|
349 |
+
> - Until [ComfyUI/issues/1502](https://github.com/comfyanonymous/ComfyUI/issues/1502) is resolved and/or [ComfyUI/pull/1503](https://github.com/comfyanonymous/ComfyUI/pull/1503) is pulled in, then know that you're benefiting from hundreds of millions of saved cycles each run.
|
350 |
+
>
|
351 |
+
> - Specifically, for a rather complex test workflow, the patch reduces iterations of `recursive_will_execute` from 113,292,566 to just 135 (and 116.32 seconds to 69.84 seconds on my machine) on a fresh queue, and reduces recursive calls of `recursive_output_delete_if_changed` from 250,496,808 to 142 (and 158.13 seconds to 0.0 seconds on my machine).
|
352 |
+
>
|
353 |
+
> - ⚠️ *However,* there is a chance ComfyUI changes something in/around the code I patched which could break. If that's the case, you should disable the optimization from rgthree-comfy settings.
|
354 |
+
>
|
355 |
+
> </details>
|
356 |
+
|
357 |
+
|
358 |
+
## "Queue Selected Output Nodes" in right-click menu
|
359 |
+
> Sometimes you want to just queue one or two paths to specific output node(s) without executing the entire workflow. Well, now you can do just that by right-clicking on an output node and selecting `Queue Selected Output Nodes (rgthree)`.
|
360 |
+
>
|
361 |
+
> <details>
|
362 |
+
> <summary>ℹ️ <i>More Information</i></summary>
|
363 |
+
>
|
364 |
+
> - Select the _output_ nodes you want to execute.
|
365 |
+
>
|
366 |
+
> - Note: Only output nodes are captured and traversed, not all selected nodes. So if you select an output AND a node from a different path, only the path connected to the output will be executed and not non-output nodes, even if they were selected.
|
367 |
+
>
|
368 |
+
> - Note: The whole workflow is serialized, and then we trim what we don't want for the backend. So things like all seed random/increment/decrement will run even if that node isn't being sent in the end, etc.
|
369 |
+
>
|
370 |
+
> </details>
|
371 |
+
|
372 |
+
|
373 |
+
## Auto-Nest Subdirectories in long Combos
|
374 |
+
> _(Off by default while experimenting, turn on in rgthree-comfy settings)_.
|
375 |
+
>
|
376 |
+
> Automatically detect top-level subdirectories in long combo lists (like, Load Checkpoint) and break out into sub directories.
|
377 |
+
|
378 |
+
|
379 |
+
## Quick Mute/Bypass Toggles in Group Headers
|
380 |
+
> _(Off by default while experimenting, turn on in rgthree-comfy settings)_.
|
381 |
+
>
|
382 |
+
> Adds a mute and/or bypass toggle icons in the top-right of Group Headers for one-click toggling of groups you may be currently looking at.
|
383 |
+
|
384 |
+
|
385 |
+
## Import Individual Node Widgets (Drag & Drop)
|
386 |
+
> _(Off by default while experimenting, turn on in rgthree-comfy settings)_.
|
387 |
+
>
|
388 |
+
> Allows dragging and dropping an image/JSON workflow from a previous generation and overriding the same node's widgets
|
389 |
+
> (that match with the same id & type). This is useful if you have several generations using the same general workflow
|
390 |
+
> and would like to import just some data, like a previous generation's seed, or prompt, etc.
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
## "Copy Image" in right-click menu
|
395 |
+
> Right clicking on a node that has an image should have a context-menu item of "Copy Image" will allow you to copy the image right to your clipboard
|
396 |
+
>
|
397 |
+
> <i>🎓 I believe this has graduated, with ComfyUI recently adding this setting too. You won't get two menu items; my code checks that there isn't already a "Copy Image" item there before adding it.</i>
|
398 |
+
|
399 |
+
|
400 |
+
## Other/Smaller Fixes
|
401 |
+
- Fixed the width of ultra-wide node chooser on double click.
|
402 |
+
- Fixed z-indexes for textareas that would overlap above other elements, like Properties Panel, or @pythongosssss's image viewer.
|
403 |
+
- Check for bad links when loading a workflow and log to console, by default. _(See Link Fixer below)._
|
404 |
+
|
405 |
+
<br>
|
406 |
+
|
407 |
+
# 📄 Link Fixer
|
408 |
+
|
409 |
+
If your workflows sometimes have missing connections, or even errors on load, start up ComfyUI and go to http://127.0.0.1:8188/rgthree/link_fixer which will allow you to drop in an image or workflow json file and check for and fix any bad links.
|
410 |
+
|
411 |
+
You can also enable a link fixer check in the rgthree-comfy settings to give you an alert if you load a workflow with bad linking data to start.
|
rgthree-comfy/__build__.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import subprocess
|
4 |
+
import os
|
5 |
+
from shutil import rmtree, copytree, ignore_patterns
|
6 |
+
from glob import glob
|
7 |
+
import time
|
8 |
+
import re
|
9 |
+
import argparse
|
10 |
+
|
11 |
+
from py.log import COLORS
|
12 |
+
from py.config import RGTHREE_CONFIG
|
13 |
+
|
14 |
+
start = time.time()
|
15 |
+
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
parser.add_argument("-t", "--with-tests", default=False, action="store_true")
|
18 |
+
parser.add_argument("-f", "--fix", default=False, action="store_true")
|
19 |
+
args = parser.parse_args()
|
20 |
+
|
21 |
+
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
|
22 |
+
DIR_SRC_WEB = os.path.abspath(f'{THIS_DIR}/src_web/')
|
23 |
+
DIR_WEB = os.path.abspath(f'{THIS_DIR}/web/')
|
24 |
+
DIR_WEB_COMFYUI = os.path.abspath(f'{DIR_WEB}/comfyui/')
|
25 |
+
|
26 |
+
|
27 |
+
def log_step(msg=None, status=None):
|
28 |
+
""" Logs a step keeping track of timing and initial msg. """
|
29 |
+
global step_msg # pylint: disable=W0601
|
30 |
+
global step_start # pylint: disable=W0601
|
31 |
+
global step_warns # pylint: disable=W0601
|
32 |
+
if msg:
|
33 |
+
tag = f'{COLORS["YELLOW"]}[ Notice ]' if status == 'Notice' else f'{COLORS["RESET"]}[Starting]'
|
34 |
+
step_msg = f'▻ {tag}{COLORS["RESET"]} {msg}...'
|
35 |
+
step_start = time.time()
|
36 |
+
step_warns = []
|
37 |
+
print(step_msg, end="\r")
|
38 |
+
elif status:
|
39 |
+
if status != 'Error':
|
40 |
+
status = "Warn" if len(step_warns) > 0 else status
|
41 |
+
step_time = round(time.time() - step_start, 3)
|
42 |
+
if status == 'Error':
|
43 |
+
status_msg = f'{COLORS["RED"]}⤫ {status}{COLORS["RESET"]}'
|
44 |
+
elif status == 'Warn':
|
45 |
+
status_msg = f'{COLORS["YELLOW"]}! {status}{COLORS["RESET"]}'
|
46 |
+
else:
|
47 |
+
status_msg = f'{COLORS["BRIGHT_GREEN"]}🗸 {status}{COLORS["RESET"]}'
|
48 |
+
print(f'{step_msg.ljust(64, ".")} {status_msg} ({step_time}s)')
|
49 |
+
for warning in step_warns:
|
50 |
+
print(warning)
|
51 |
+
|
52 |
+
|
53 |
+
if args.fix:
|
54 |
+
tss = glob(os.path.join(DIR_SRC_WEB, "**", "*.ts"), recursive=True)
|
55 |
+
log_step(msg=f'Fixing {len(tss)} ts files')
|
56 |
+
for ts in tss:
|
57 |
+
with open(ts, 'r', encoding="utf-8") as f:
|
58 |
+
content = f.read()
|
59 |
+
# (\s*from\s*['"](?!.*[.]js['"]).*?)(['"];) in vscode.
|
60 |
+
content, n = re.subn(r'(\s*from [\'"](?!.*[.]js[\'"]).*?)([\'"];)', '\\1.js\\2', content)
|
61 |
+
if n > 0:
|
62 |
+
filename = os.path.basename(ts)
|
63 |
+
step_warns.append(
|
64 |
+
f' - {filename} has {n} import{"s" if n > 1 else ""} that do not end in ".js"')
|
65 |
+
with open(ts, 'w', encoding="utf-8") as f:
|
66 |
+
f.write(content)
|
67 |
+
log_step(status="Done")
|
68 |
+
|
69 |
+
log_step(msg='Copying web directory')
|
70 |
+
rmtree(DIR_WEB)
|
71 |
+
copytree(DIR_SRC_WEB, DIR_WEB, ignore=ignore_patterns("typings*", "*.ts", "*.scss"))
|
72 |
+
log_step(status="Done")
|
73 |
+
|
74 |
+
ts_version_result = subprocess.run(["node", "./node_modules/typescript/bin/tsc", "-v"],
|
75 |
+
capture_output=True,
|
76 |
+
text=True,
|
77 |
+
check=True)
|
78 |
+
ts_version = re.sub(r'^.*Version\s*([\d\.]+).*', 'v\\1', ts_version_result.stdout, flags=re.DOTALL)
|
79 |
+
|
80 |
+
log_step(msg=f'TypeScript ({ts_version})')
|
81 |
+
checked = subprocess.run(["node", "./node_modules/typescript/bin/tsc"], check=True)
|
82 |
+
log_step(status="Done")
|
83 |
+
|
84 |
+
if args.with_tests:
|
85 |
+
log_step(msg='Removing directories (KEEPING TESTING)', status="Notice")
|
86 |
+
else:
|
87 |
+
log_step(msg='Removing uneeded directories')
|
88 |
+
test_path = os.path.join(DIR_WEB, 'comfyui', 'tests')
|
89 |
+
if os.path.exists(test_path):
|
90 |
+
rmtree(test_path)
|
91 |
+
rmtree(os.path.join(DIR_WEB, 'comfyui', 'testing'))
|
92 |
+
# Always remove the dummy scripts_comfy directory
|
93 |
+
rmtree(os.path.join(DIR_WEB, 'scripts_comfy'))
|
94 |
+
log_step(status="Done")
|
95 |
+
|
96 |
+
scsss = glob(os.path.join(DIR_SRC_WEB, "**", "*.scss"), recursive=True)
|
97 |
+
log_step(msg=f'SASS for {len(scsss)} files')
|
98 |
+
scsss = [i.replace(THIS_DIR, '.') for i in scsss]
|
99 |
+
cmds = ["node", "./node_modules/sass/sass"]
|
100 |
+
for scss in scsss:
|
101 |
+
out = scss.replace('src_web', 'web').replace('.scss', '.css')
|
102 |
+
cmds.append(f'{scss}:{out}')
|
103 |
+
cmds.append('--no-source-map')
|
104 |
+
checked = subprocess.run(cmds, check=True)
|
105 |
+
log_step(status="Done")
|
106 |
+
|
107 |
+
# Handle the common directories. Because ComfyUI loads under /extensions/rgthree-comfy we can't
|
108 |
+
# easily share sources outside of the `DIR_WEB_COMFYUI` _and_ allow typescript to resolve them in
|
109 |
+
# src view, so we set the path in the tsconfig to map an import of "rgthree/common" to the
|
110 |
+
# "src_web/common" directory, but then need to rewrite the comfyui JS files to load from
|
111 |
+
# "../../rgthree/common" (which we map correctly in rgthree_server.py).
|
112 |
+
log_step(msg='Cleaning Imports')
|
113 |
+
js_files = glob(os.path.join(DIR_WEB, '**', '*.js'), recursive=True)
|
114 |
+
for file in js_files:
|
115 |
+
rel_path = file.replace(f'{DIR_WEB}/', "")
|
116 |
+
with open(file, 'r', encoding="utf-8") as f:
|
117 |
+
filedata = f.read()
|
118 |
+
num = rel_path.count(os.sep)
|
119 |
+
if rel_path.startswith('comfyui'):
|
120 |
+
filedata = re.sub(r'(from\s+["\'])rgthree/', f'\\1{"../" * (num + 1)}rgthree/', filedata)
|
121 |
+
filedata = re.sub(r'(from\s+["\'])scripts/', f'\\1{"../" * (num + 1)}scripts/', filedata)
|
122 |
+
else:
|
123 |
+
filedata = re.sub(r'(from\s+["\'])rgthree/', f'\\1{"../" * num}', filedata)
|
124 |
+
filedata = re.sub(r'(from\s+["\'])scripts/', f'\\1{"../" * (num + 1)}scripts/', filedata)
|
125 |
+
filedata, n = re.subn(r'(\s*from [\'"](?!.*[.]js[\'"]).*?)([\'"];)', '\\1.js\\2', filedata)
|
126 |
+
if n > 0:
|
127 |
+
filename = os.path.basename(file)
|
128 |
+
step_warns.append(
|
129 |
+
f' - {filename} has {n} import{"s" if n > 1 else ""} that do not end in ".js"')
|
130 |
+
with open(file, 'w', encoding="utf-8") as f:
|
131 |
+
f.write(filedata)
|
132 |
+
log_step(status="Done")
|
133 |
+
|
134 |
+
print(f'Finished all in {round(time.time() - start, 3)}s')
|
rgthree-comfy/__init__.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
@author: rgthree
|
3 |
+
@title: Comfy Nodes
|
4 |
+
@nickname: rgthree
|
5 |
+
@description: A bunch of nodes I created that I also find useful.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from glob import glob
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
import re
|
13 |
+
import random
|
14 |
+
|
15 |
+
import execution
|
16 |
+
|
17 |
+
from .py.log import log
|
18 |
+
from .py.config import get_config_value
|
19 |
+
from .py.rgthree_server import *
|
20 |
+
|
21 |
+
from .py.context import RgthreeContext
|
22 |
+
from .py.context_switch import RgthreeContextSwitch
|
23 |
+
from .py.context_switch_big import RgthreeContextSwitchBig
|
24 |
+
from .py.display_any import RgthreeDisplayAny, RgthreeDisplayInt
|
25 |
+
from .py.lora_stack import RgthreeLoraLoaderStack
|
26 |
+
from .py.seed import RgthreeSeed
|
27 |
+
from .py.sdxl_empty_latent_image import RgthreeSDXLEmptyLatentImage
|
28 |
+
from .py.power_prompt import RgthreePowerPrompt
|
29 |
+
from .py.power_prompt_simple import RgthreePowerPromptSimple
|
30 |
+
from .py.image_inset_crop import RgthreeImageInsetCrop
|
31 |
+
from .py.context_big import RgthreeBigContext
|
32 |
+
from .py.dynamic_context import RgthreeDynamicContext
|
33 |
+
from .py.dynamic_context_switch import RgthreeDynamicContextSwitch
|
34 |
+
from .py.ksampler_config import RgthreeKSamplerConfig
|
35 |
+
from .py.sdxl_power_prompt_postive import RgthreeSDXLPowerPromptPositive
|
36 |
+
from .py.sdxl_power_prompt_simple import RgthreeSDXLPowerPromptSimple
|
37 |
+
from .py.any_switch import RgthreeAnySwitch
|
38 |
+
from .py.context_merge import RgthreeContextMerge
|
39 |
+
from .py.context_merge_big import RgthreeContextMergeBig
|
40 |
+
from .py.image_comparer import RgthreeImageComparer
|
41 |
+
from .py.power_lora_loader import RgthreePowerLoraLoader
|
42 |
+
|
43 |
+
NODE_CLASS_MAPPINGS = {
|
44 |
+
RgthreeBigContext.NAME: RgthreeBigContext,
|
45 |
+
RgthreeContext.NAME: RgthreeContext,
|
46 |
+
RgthreeContextSwitch.NAME: RgthreeContextSwitch,
|
47 |
+
RgthreeContextSwitchBig.NAME: RgthreeContextSwitchBig,
|
48 |
+
RgthreeContextMerge.NAME: RgthreeContextMerge,
|
49 |
+
RgthreeContextMergeBig.NAME: RgthreeContextMergeBig,
|
50 |
+
RgthreeDisplayInt.NAME: RgthreeDisplayInt,
|
51 |
+
RgthreeDisplayAny.NAME: RgthreeDisplayAny,
|
52 |
+
RgthreeLoraLoaderStack.NAME: RgthreeLoraLoaderStack,
|
53 |
+
RgthreeSeed.NAME: RgthreeSeed,
|
54 |
+
RgthreeImageInsetCrop.NAME: RgthreeImageInsetCrop,
|
55 |
+
RgthreePowerPrompt.NAME: RgthreePowerPrompt,
|
56 |
+
RgthreePowerPromptSimple.NAME: RgthreePowerPromptSimple,
|
57 |
+
RgthreeKSamplerConfig.NAME: RgthreeKSamplerConfig,
|
58 |
+
RgthreeSDXLEmptyLatentImage.NAME: RgthreeSDXLEmptyLatentImage,
|
59 |
+
RgthreeSDXLPowerPromptPositive.NAME: RgthreeSDXLPowerPromptPositive,
|
60 |
+
RgthreeSDXLPowerPromptSimple.NAME: RgthreeSDXLPowerPromptSimple,
|
61 |
+
RgthreeAnySwitch.NAME: RgthreeAnySwitch,
|
62 |
+
RgthreeImageComparer.NAME: RgthreeImageComparer,
|
63 |
+
RgthreePowerLoraLoader.NAME: RgthreePowerLoraLoader,
|
64 |
+
}
|
65 |
+
|
66 |
+
if get_config_value('unreleased.dynamic_context.enabled') is True:
|
67 |
+
NODE_CLASS_MAPPINGS[RgthreeDynamicContext.NAME] = RgthreeDynamicContext
|
68 |
+
NODE_CLASS_MAPPINGS[RgthreeDynamicContextSwitch.NAME] = RgthreeDynamicContextSwitch
|
69 |
+
|
70 |
+
# WEB_DIRECTORY is the comfyui nodes directory that ComfyUI will link and auto-load.
|
71 |
+
WEB_DIRECTORY = "./web/comfyui"
|
72 |
+
|
73 |
+
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
|
74 |
+
DIR_WEB = os.path.abspath(f'{THIS_DIR}/{WEB_DIRECTORY}')
|
75 |
+
DIR_PY = os.path.abspath(f'{THIS_DIR}/py')
|
76 |
+
|
77 |
+
# remove old directories
|
78 |
+
OLD_DIRS = [
|
79 |
+
os.path.abspath(f'{THIS_DIR}/../../web/extensions/rgthree'),
|
80 |
+
os.path.abspath(f'{THIS_DIR}/../../web/extensions/rgthree-comfy'),
|
81 |
+
]
|
82 |
+
for old_dir in OLD_DIRS:
|
83 |
+
if os.path.exists(old_dir):
|
84 |
+
shutil.rmtree(old_dir)
|
85 |
+
|
86 |
+
__all__ = ['NODE_CLASS_MAPPINGS', 'WEB_DIRECTORY']
|
87 |
+
|
88 |
+
NOT_NODES = ['constants', 'log', 'utils', 'rgthree', 'rgthree_server', 'image_clipbaord', 'config']
|
89 |
+
|
90 |
+
nodes = []
|
91 |
+
for file in glob(os.path.join(DIR_PY, '*.py')) + glob(os.path.join(DIR_WEB, '*.js')):
|
92 |
+
name = os.path.splitext(os.path.basename(file))[0]
|
93 |
+
if name in NOT_NODES or name in nodes:
|
94 |
+
continue
|
95 |
+
if name.startswith('_') or name.startswith('base') or 'utils' in name:
|
96 |
+
continue
|
97 |
+
nodes.append(name)
|
98 |
+
if name == 'display_any':
|
99 |
+
nodes.append('display_int')
|
100 |
+
|
101 |
+
print()
|
102 |
+
adjs = ['exciting', 'extraordinary', 'epic', 'fantastic', 'magnificent']
|
103 |
+
log(f'Loaded {len(nodes)} {random.choice(adjs)} nodes.', color='BRIGHT_GREEN')
|
104 |
+
|
105 |
+
# Alright, I don't like doing this, but until https://github.com/comfyanonymous/ComfyUI/issues/1502
|
106 |
+
# and/or https://github.com/comfyanonymous/ComfyUI/pull/1503 is pulled into ComfyUI, we need a way
|
107 |
+
# to optimize the recursion that happens on prompt eval. This is particularly important for
|
108 |
+
# rgthree nodes because workflows can contain many context nodes, but the problem would exist for
|
109 |
+
# other nodes' (like "pipe" nodes, efficieny nodes). With `Context Big` nodes being
|
110 |
+
# introduced, the number of input recursion that happens in these methods is exponential with a
|
111 |
+
# saving of 1000's of percentage points over.
|
112 |
+
|
113 |
+
# We'll use this to check if we _can_ patch execution. Other work to change the execution may
|
114 |
+
# remove these methods, and we want to ensure people's apps do not break.
|
115 |
+
could_patch_execution = (hasattr(execution, 'recursive_output_delete_if_changed') and
|
116 |
+
hasattr(execution, 'recursive_will_execute') and
|
117 |
+
hasattr(execution.PromptExecutor, 'execute'))
|
118 |
+
|
119 |
+
if get_config_value('features.patch_recursive_execution') is True:
|
120 |
+
if not could_patch_execution:
|
121 |
+
log("NOTE: Will NOT use rgthree's optimized recursive execution as ComfyUI has changed.",
|
122 |
+
color='YELLOW')
|
123 |
+
else:
|
124 |
+
log("Will use rgthree's optimized recursive execution.", color='BRIGHT_GREEN')
|
125 |
+
|
126 |
+
|
127 |
+
class RgthreePatchRecursiveExecute_Set_patch_recursive_execution_to_false_if_not_working:
|
128 |
+
"""A fake 'list' that the caller for recursive_will_execute expects but we override such that
|
129 |
+
`len(inst)` will return the count number, and `inst[-1]` will return the unique_id. Since that
|
130 |
+
all the caller cares about, we can save several minutes and many MB of ram by simply counting
|
131 |
+
numbers instead of concatenating a list of millions (only to count it). However the caller
|
132 |
+
expects such a list, so we fake it with this.
|
133 |
+
|
134 |
+
This mimics the enhancement from https://github.com/rgthree/ComfyUI/commit/50b3fb1 but without
|
135 |
+
modifying the execution.py
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(self, unique_id):
|
139 |
+
self.unique_id = unique_id
|
140 |
+
self.count = 0
|
141 |
+
|
142 |
+
def add(self, value):
|
143 |
+
self.count += value
|
144 |
+
|
145 |
+
def __getitem__(self, key):
|
146 |
+
"""Returns the `unique_id` with '-1' since that's what the caller expects."""
|
147 |
+
if key == -1:
|
148 |
+
return self.unique_id
|
149 |
+
# This one would future proof the proposed changes, in that case "0" is the count
|
150 |
+
if key == 0:
|
151 |
+
return self.count
|
152 |
+
else:
|
153 |
+
return -1
|
154 |
+
|
155 |
+
def __len__(self):
|
156 |
+
"""Returns the "count" of the "list" as if we were building up a list instea of just
|
157 |
+
incrementing `count`.
|
158 |
+
"""
|
159 |
+
return self.count
|
160 |
+
|
161 |
+
# The following (hopefully) future proofs if https://github.com/rgthree/ComfyUI/commit/50b3fb1
|
162 |
+
# goes in, which changes from using `len` on a list, to sort directly (and, thus "<" and ">").
|
163 |
+
def __gt__(self, other):
|
164 |
+
return self.count > other
|
165 |
+
|
166 |
+
def __lt__(self, other):
|
167 |
+
return self.count < other
|
168 |
+
|
169 |
+
def __str__(self):
|
170 |
+
return str((
|
171 |
+
self.count,
|
172 |
+
self.unique_id,
|
173 |
+
))
|
174 |
+
|
175 |
+
|
176 |
+
# Caches which will be cleared on each run
|
177 |
+
execution.rgthree_cache_recursive_output_delete_if_changed_output = {}
|
178 |
+
execution.rgthree_cache_recursive_will_execute = {}
|
179 |
+
execution.rgthree_is_currently_optimized = False
|
180 |
+
|
181 |
+
|
182 |
+
def rgthree_execute(self, *args, **kwargs):
|
183 |
+
""" A patch of ComfyUI's default execution for optimization (or un-optimization) via config."""
|
184 |
+
if get_config_value('features.patch_recursive_execution') is True:
|
185 |
+
|
186 |
+
if could_patch_execution:
|
187 |
+
log("Using rgthree's optimized recursive execution.", color='GREEN')
|
188 |
+
# When we execute, we'll reset our global cache here.
|
189 |
+
execution.rgthree_cache_recursive_output_delete_if_changed_output = {}
|
190 |
+
execution.rgthree_cache_recursive_will_execute = {}
|
191 |
+
|
192 |
+
if not execution.rgthree_is_currently_optimized:
|
193 |
+
log("First run patching recursive_output_delete_if_changed and recursive_will_execute.",
|
194 |
+
color='GREEN',
|
195 |
+
msg_color='RESET')
|
196 |
+
log(
|
197 |
+
"Note: \33[0mIf execution seems broken due to forward ComfyUI changes, you can disable " +
|
198 |
+
"the optimization from rgthree settings in ComfyUI.",
|
199 |
+
color='YELLOW')
|
200 |
+
execution.rgthree_old_recursive_output_delete_if_changed = execution.recursive_output_delete_if_changed
|
201 |
+
execution.recursive_output_delete_if_changed = rgthree_recursive_output_delete_if_changed
|
202 |
+
|
203 |
+
execution.rgthree_old_recursive_will_execute = execution.recursive_will_execute
|
204 |
+
execution.recursive_will_execute = rgthree_recursive_will_execute
|
205 |
+
execution.rgthree_is_currently_optimized = True
|
206 |
+
|
207 |
+
elif execution.rgthree_is_currently_optimized:
|
208 |
+
log("Removing optimizations to recursive_output_delete_if_changed and recursive_will_execute.",
|
209 |
+
color='YELLOW',
|
210 |
+
msg_color='RESET')
|
211 |
+
log("You can enable optimization in the rgthree settings in ComfyUI.", color='CYAN')
|
212 |
+
execution.recursive_output_delete_if_changed = execution.rgthree_old_recursive_output_delete_if_changed
|
213 |
+
execution.recursive_will_execute = execution.rgthree_old_recursive_will_execute
|
214 |
+
execution.rgthree_is_currently_optimized = False
|
215 |
+
|
216 |
+
# We always call the original execute, it's just whether we patch or unpacth first.
|
217 |
+
return self.rgthree_old_execute(*args, **kwargs)
|
218 |
+
|
219 |
+
|
220 |
+
# We always patch execute, so we can check if we want to do work. Up in rgthree_execute we will
|
221 |
+
# either patch or unpatch recursive_will_execute recursive_output_delete_if_changed at runtime when
|
222 |
+
# config changes.
|
223 |
+
execution.PromptExecutor.rgthree_old_execute = execution.PromptExecutor.execute
|
224 |
+
execution.PromptExecutor.execute = rgthree_execute
|
225 |
+
|
226 |
+
|
227 |
+
def rgthree_recursive_will_execute(prompt, outputs, current_item, *args, **kwargs):
|
228 |
+
"""Patches recursive_will_execute function to cache the result of each output."""
|
229 |
+
unique_id = current_item
|
230 |
+
inputs = prompt[unique_id]['inputs']
|
231 |
+
will_execute = RgthreePatchRecursiveExecute_Set_patch_recursive_execution_to_false_if_not_working(
|
232 |
+
unique_id)
|
233 |
+
if unique_id in outputs:
|
234 |
+
return will_execute
|
235 |
+
|
236 |
+
will_execute.add(1)
|
237 |
+
for x in inputs:
|
238 |
+
input_data = inputs[x]
|
239 |
+
if isinstance(input_data, list):
|
240 |
+
input_unique_id = input_data[0]
|
241 |
+
output_index = input_data[1]
|
242 |
+
node_output_cache_key = f'{input_unique_id}.{output_index}'
|
243 |
+
will_execute_value = None
|
244 |
+
# If this node's output has already been recursively evaluated, then we can reuse.
|
245 |
+
if node_output_cache_key in execution.rgthree_cache_recursive_will_execute:
|
246 |
+
will_execute_value = execution.rgthree_cache_recursive_will_execute[node_output_cache_key]
|
247 |
+
elif input_unique_id not in outputs:
|
248 |
+
will_execute_value = execution.recursive_will_execute(prompt, outputs, input_unique_id,
|
249 |
+
*args, **kwargs)
|
250 |
+
execution.rgthree_cache_recursive_will_execute[node_output_cache_key] = will_execute_value
|
251 |
+
if will_execute_value is not None:
|
252 |
+
will_execute.add(len(will_execute_value))
|
253 |
+
return will_execute
|
254 |
+
|
255 |
+
|
256 |
+
def rgthree_recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item, *args,
|
257 |
+
**kwargs):
|
258 |
+
"""Patches recursive_output_delete_if_changed function to cache the result of each output."""
|
259 |
+
unique_id = current_item
|
260 |
+
inputs = prompt[unique_id]['inputs']
|
261 |
+
class_type = prompt[unique_id]['class_type']
|
262 |
+
class_def = execution.nodes.NODE_CLASS_MAPPINGS[class_type]
|
263 |
+
|
264 |
+
is_changed_old = ''
|
265 |
+
is_changed = ''
|
266 |
+
to_delete = False
|
267 |
+
if hasattr(class_def, 'IS_CHANGED'):
|
268 |
+
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
|
269 |
+
is_changed_old = old_prompt[unique_id]['is_changed']
|
270 |
+
if 'is_changed' not in prompt[unique_id]:
|
271 |
+
input_data_all = execution.get_input_data(inputs, class_def, unique_id, outputs)
|
272 |
+
if input_data_all is not None:
|
273 |
+
try:
|
274 |
+
#is_changed = class_def.IS_CHANGED(**input_data_all)
|
275 |
+
is_changed = execution.map_node_over_list(class_def, input_data_all, "IS_CHANGED")
|
276 |
+
prompt[unique_id]['is_changed'] = is_changed
|
277 |
+
except:
|
278 |
+
to_delete = True
|
279 |
+
else:
|
280 |
+
is_changed = prompt[unique_id]['is_changed']
|
281 |
+
|
282 |
+
if unique_id not in outputs:
|
283 |
+
return True
|
284 |
+
|
285 |
+
if not to_delete:
|
286 |
+
if is_changed != is_changed_old:
|
287 |
+
to_delete = True
|
288 |
+
elif unique_id not in old_prompt:
|
289 |
+
to_delete = True
|
290 |
+
elif inputs == old_prompt[unique_id]['inputs']:
|
291 |
+
for x in inputs:
|
292 |
+
input_data = inputs[x]
|
293 |
+
|
294 |
+
if isinstance(input_data, list):
|
295 |
+
input_unique_id = input_data[0]
|
296 |
+
output_index = input_data[1]
|
297 |
+
node_output_cache_key = f'{input_unique_id}.{output_index}'
|
298 |
+
# If this node's output has already been recursively evaluated, then we can stop.
|
299 |
+
if node_output_cache_key in execution.rgthree_cache_recursive_output_delete_if_changed_output:
|
300 |
+
to_delete = execution.rgthree_cache_recursive_output_delete_if_changed_output[
|
301 |
+
node_output_cache_key]
|
302 |
+
elif input_unique_id in outputs:
|
303 |
+
to_delete = execution.recursive_output_delete_if_changed(prompt, old_prompt, outputs,
|
304 |
+
input_unique_id, *args,
|
305 |
+
**kwargs)
|
306 |
+
execution.rgthree_cache_recursive_output_delete_if_changed_output[
|
307 |
+
node_output_cache_key] = to_delete
|
308 |
+
else:
|
309 |
+
to_delete = True
|
310 |
+
if to_delete:
|
311 |
+
break
|
312 |
+
else:
|
313 |
+
to_delete = True
|
314 |
+
|
315 |
+
if to_delete:
|
316 |
+
d = outputs.pop(unique_id)
|
317 |
+
del d
|
318 |
+
return to_delete
|
319 |
+
|
320 |
+
|
321 |
+
print()
|
rgthree-comfy/__update_comfy__.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# A nicer output for git pulling custom nodes (and ComfyUI).
|
4 |
+
# Quick shell version: ls | xargs -I % sh -c 'echo; echo %; git -C % pull'
|
5 |
+
|
6 |
+
import os
|
7 |
+
from subprocess import Popen, PIPE, STDOUT
|
8 |
+
|
9 |
+
|
10 |
+
def pull_path(path):
|
11 |
+
p = Popen(["git", "-C", path, "pull"], stdout=PIPE, stderr=STDOUT)
|
12 |
+
output, error = p.communicate()
|
13 |
+
return output.decode()
|
14 |
+
|
15 |
+
THIS_DIR=os.path.dirname(os.path.abspath(__file__))
|
16 |
+
|
17 |
+
def show_output(output):
|
18 |
+
if output.startswith('Already up to date'):
|
19 |
+
print(f' \33[32m🗸 {output}\33[0m', end ='')
|
20 |
+
elif output.startswith('error:'):
|
21 |
+
print(f' \33[31m🞫 Error.\33[0m \n {output}')
|
22 |
+
else:
|
23 |
+
print(f' \33[33m🡅 Needs update.\33[0m \n {output}', end='')
|
24 |
+
|
25 |
+
|
26 |
+
os.chdir(THIS_DIR)
|
27 |
+
os.chdir("../")
|
28 |
+
|
29 |
+
# Get the list or custom nodes, so we can format the output a little more nicely.
|
30 |
+
custom_extensions = []
|
31 |
+
custom_extensions_name_max = 0
|
32 |
+
for directory in os.listdir(os.getcwd()):
|
33 |
+
if os.path.isdir(directory) and directory != "__pycache__": #and directory != "rgthree-comfy" :
|
34 |
+
custom_extensions.append({
|
35 |
+
'directory': directory
|
36 |
+
})
|
37 |
+
if len(directory) > custom_extensions_name_max:
|
38 |
+
custom_extensions_name_max = len(directory)
|
39 |
+
|
40 |
+
if len(custom_extensions) == 0:
|
41 |
+
custom_extensions_name_max = 15
|
42 |
+
else:
|
43 |
+
custom_extensions_name_max += 6
|
44 |
+
|
45 |
+
# Update ComfyUI itself.
|
46 |
+
label = "{0:.<{max}}".format('Updating ComfyUI ', max=custom_extensions_name_max)
|
47 |
+
print(label, end = '')
|
48 |
+
show_output(pull_path('../'))
|
49 |
+
|
50 |
+
# If we have custom nodes, update them as well.
|
51 |
+
if len(custom_extensions) > 0:
|
52 |
+
print(f'\nUpdating custom_nodes ({len(custom_extensions)}):')
|
53 |
+
for custom_extension in custom_extensions:
|
54 |
+
directory = custom_extension['directory']
|
55 |
+
label = "{0:.<{max}}".format(f'🗀 {directory} ', max=custom_extensions_name_max)
|
56 |
+
print(label, end = '')
|
57 |
+
show_output(pull_path(directory))
|
rgthree-comfy/docs/rgthree_advanced.png
ADDED
![]() |
Git LFS Details
|
rgthree-comfy/docs/rgthree_advanced_metadata.png
ADDED
![]() |
Git LFS Details
|
rgthree-comfy/docs/rgthree_context.png
ADDED
![]() |
Git LFS Details
|
rgthree-comfy/docs/rgthree_context_metadata.png
ADDED
![]() |
Git LFS Details
|