from functools import partial from abc import abstractmethod import torch import torch.nn as nn from einops import rearrange import torch.nn.functional as F from ...models.utils_diffusion import timestep_embedding from ...common import checkpoint from ...basics import ( zero_module, conv_nd, linear, avg_pool_nd, normalization ) from ...modules.attention import SpatialTransformer, TemporalTransformer import comfy.ops import logging ops = comfy.ops.disable_weight_init class TimestepBlock(nn.Module): """ Any module where forward() takes timestep embeddings as a second argument. """ @abstractmethod def forward(self, x, emb): """ Apply the module to `x` given `emb` timestep embeddings. """ #This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index" def forward_timestep_embed(ts, x, emb, context=None, batch_size=None, transformer_options={}): for layer in ts: if isinstance(layer, TimestepBlock): x = layer(x, emb, batch_size=batch_size) elif isinstance(layer, SpatialTransformer): x = layer(x, context) if "transformer_index" in transformer_options: transformer_options["transformer_index"] += 1 elif isinstance(layer, TemporalTransformer): x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size) x = layer(x, context) if "transformer_index" in transformer_options: transformer_options["transformer_index"] += 1 x = rearrange(x, 'b c f h w -> (b f) c h w') else: x = layer(x) return x class TimestepEmbedSequential(nn.Sequential, TimestepBlock): """ A sequential module that passes timestep embeddings to the children that support it as an extra input. """ def forward(self, *args, **kwargs): return forward_timestep_embed(self, *args, **kwargs) class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = operations.conv_nd( dims, self.channels, self.out_channels, 3, stride=stride, padding=padding ) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims if use_conv: self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device) def forward(self, x): assert x.shape[1] == self.channels if self.dims == 3: x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest') else: x = F.interpolate(x, scale_factor=2, mode='nearest') if self.use_conv: x = self.conv(x) return x class ResBlock(TimestepBlock): """ A residual block that can optionally change the number of channels. :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param use_conv: if True and out_channels is specified, use a spatial convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. :param dims: determines if the signal is 1D, 2D, or 3D. :param up: if True, use this block for upsampling. :param down: if True, use this block for downsampling. :param use_temporal_conv: if True, use the temporal convolution. :param use_image_dataset: if True, the temporal parameters will not be optimized. """ def __init__( self, channels, emb_channels, dropout, out_channels=None, use_scale_shift_norm=False, dims=2, use_checkpoint=False, use_conv=False, up=False, down=False, kernel_size=3, use_temporal_conv=False, tempspatial_aware=False, dtype=None, device=None, operations=ops ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm self.use_temporal_conv = use_temporal_conv if isinstance(kernel_size, list): padding =[k // 2 for k in kernel_size] else: padding = kernel_size // 2 # operations used in normalization function self.in_layers = nn.Sequential( normalization(channels, dtype=dtype, device=device), nn.SiLU(), operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device) self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device) elif down: self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device) self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device) else: self.h_upd = self.x_upd = nn.Identity() self.emb_layers = nn.Sequential( nn.SiLU(), operations.Linear( emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device ), ) self.out_layers = nn.Sequential( normalization(self.out_channels, dtype=dtype, device=device), nn.SiLU(), nn.Dropout(p=dropout), zero_module(operations.Conv2d(self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device) else: self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device) if self.use_temporal_conv: self.temopral_conv = TemporalConvBlock( self.out_channels, self.out_channels, dropout=0.1, spatial_aware=tempspatial_aware, dtype=dtype, device=device ) def forward(self, x, emb, batch_size=None): """ Apply the block to a Tensor, conditioned on a timestep embedding. :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. :return: an [N x C x ...] Tensor of outputs. """ input_tuple = (x, emb) if batch_size: forward_batchsize = partial(self._forward, batch_size=batch_size) return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint) return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint) def _forward(self, x, emb, batch_size=None): if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] scale, shift = torch.chunk(emb_out, 2, dim=1) h = out_norm(h) * (1 + scale) + shift h = out_rest(h) else: h = h + emb_out h = self.out_layers(h) h = self.skip_connection(x) + h if self.use_temporal_conv and batch_size: h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size) h = self.temopral_conv(h) h = rearrange(h, 'b c t h w -> (b t) c h w') return h class TemporalConvBlock(nn.Module): """ Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py """ def __init__( self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False, dtype=None, device=None, operations=ops ): super(TemporalConvBlock, self).__init__() if out_channels is None: out_channels = in_channels self.in_channels = in_channels self.out_channels = out_channels th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1) th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0) tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3) tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1) # conv layers self.conv1 = nn.Sequential( operations.GroupNorm(32, in_channels, device=device, dtype=dtype), nn.SiLU(), operations.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape, device=device, dtype=dtype)) self.conv2 = nn.Sequential( operations.GroupNorm(32, out_channels, device=device, dtype=dtype), nn.SiLU(), nn.Dropout(dropout), operations.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape, device=device, dtype=dtype)) self.conv3 = nn.Sequential( operations.GroupNorm(32, out_channels, device=device, dtype=dtype), nn.SiLU(), nn.Dropout(dropout), operations.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape, device=device, dtype=dtype)) self.conv4 = nn.Sequential( operations.GroupNorm(32, out_channels, device=device, dtype=dtype), nn.SiLU(), nn.Dropout(dropout), operations.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape, device=device, dtype=dtype)) # zero out the last layer params,so the conv block is identity nn.init.zeros_(self.conv4[-1].weight) nn.init.zeros_(self.conv4[-1].bias) def forward(self, x): identity = x x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) return identity + x def context_processor(context, t, img_emb=None, temporal_size=16, concat_only=False, disable_concat=False): if disable_concat: return context ## repeat t times for context [(b t) 77 768] & time embedding ## check if we use per-frame image conditioning if img_emb is not None: context = torch.cat([context, img_emb.to(context.device, context.dtype)], dim=1) if concat_only: return context b, l_context, _ = context.shape if l_context == 77 + t * temporal_size: context_text, context_img = context[:,:77,:], context[:,77:,:] context_text = context_text.repeat_interleave(repeats=t, dim=0) context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t) context = torch.cat([context_text, context_img], dim=1) else: context = context.repeat_interleave(repeats=t, dim=0) return context def apply_control(h, control, name, cond_idx=None): if control is not None and name in control and len(control[name]) > 0: frames = h.shape[0] ctrl = control[name].pop() if ctrl is not None: try: if cond_idx is not None and ctrl.shape[0] > frames: ctrl_frames_list = list(range(ctrl.shape[0])) ctrl_frames = len(ctrl_frames_list) idxs = ( ctrl_frames_list[ctrl_frames // 2:] if cond_idx == 0 else \ ctrl_frames_list[:ctrl_frames // 2] ) ctrl = ctrl[idxs] h += ctrl except Exception as e: if h.shape != ctrl.shape: logging.warning( "warning control could not be applied {} {}".format(h.shape, ctrl.shape) ) logging.warning(e) return h class UNetModel(nn.Module): """ The full UNet model with attention and timestep embedding. :param in_channels: in_channels in the input Tensor. :param model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample rates at which attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x downsampling, attention will be used. :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param conv_resample: if True, use learned convolutions for upsampling and downsampling. :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this model will be class-conditional with `num_classes` classes. :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use a fixed channel width per attention head. :param num_heads_upsample: works with num_heads to set a different number of heads for upsampling. Deprecated. :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially increased efficiency. """ def __init__(self, in_channels, model_channels, out_channels, num_res_blocks, attention_resolutions, dropout=0.0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, context_dim=None, use_scale_shift_norm=False, resblock_updown=False, num_heads=-1, num_head_channels=-1, transformer_depth=1, use_linear=False, use_checkpoint=False, temporal_conv=False, tempspatial_aware=False, temporal_attention=True, use_relative_position=True, use_causal_attention=False, temporal_length=None, use_fp16=False, addition_attention=False, temporal_selfatt_only=True, image_cross_attention=False, image_cross_attention_scale_learnable=False, default_fs=4, fs_condition=False, device=None, dtype=torch.float16, operations=ops ): super(UNetModel, self).__init__() if num_heads == -1: assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' if num_head_channels == -1: assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels self.num_res_blocks = num_res_blocks self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.temporal_attention = temporal_attention time_embed_dim = model_channels * 4 self.use_checkpoint = use_checkpoint temporal_self_att_only = True self.addition_attention = addition_attention self.temporal_length = temporal_length self.image_cross_attention = image_cross_attention self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable self.default_fs = default_fs self.fs_condition = fs_condition self.device = device #self.dtype = dtype self.dtype = torch.float32 ## Time embedding blocks self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim, device=device, dtype=self.dtype), nn.SiLU(), linear(time_embed_dim, time_embed_dim, device=device, dtype=self.dtype), ) if fs_condition: self.fps_embedding = nn.Sequential( linear(model_channels, time_embed_dim, device=device, dtype=self.dtype), nn.SiLU(), linear(time_embed_dim, time_embed_dim, device=device, dtype=self.dtype), ) nn.init.zeros_(self.fps_embedding[-1].weight) nn.init.zeros_(self.fps_embedding[-1].bias) ## Input Block self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( operations.conv_nd( dims, in_channels, model_channels, 3, padding=1, device=device, dtype=self.dtype )) ] ) if self.addition_attention: self.init_attn=TimestepEmbedSequential( TemporalTransformer( model_channels, n_heads=8, d_head=num_head_channels, depth=transformer_depth, context_dim=context_dim, use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, causal_attention=False, relative_position=use_relative_position, temporal_length=temporal_length, device=device, dtype=self.dtype )) input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for _ in range(num_res_blocks): layers = [ ResBlock(ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, use_temporal_conv=temporal_conv, device=device, dtype=self.dtype ) ] ch = mult * model_channels if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels layers.append( SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, image_cross_attention=self.image_cross_attention, image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, device=device, dtype=self.dtype ) ) if self.temporal_attention: layers.append( TemporalTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, causal_attention=use_causal_attention, relative_position=use_relative_position, temporal_length=temporal_length, device=device, dtype=self.dtype ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock(ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, device=device, dtype=self.dtype ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch, device=device, dtype=self.dtype ) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels layers = [ ResBlock(ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, use_temporal_conv=temporal_conv, device=device, dtype=self.dtype ), SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, device=device, dtype=self.dtype ) ] if self.temporal_attention: layers.append( TemporalTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, causal_attention=use_causal_attention, relative_position=use_relative_position, temporal_length=temporal_length, device=device, dtype=self.dtype ) ) layers.append( ResBlock(ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, use_temporal_conv=temporal_conv, device=device, dtype=self.dtype ) ) ## Middle Block self.middle_block = TimestepEmbedSequential(*layers) ## Output Block self.output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(channel_mult))[::-1]: for i in range(num_res_blocks + 1): ich = input_block_chans.pop() layers = [ ResBlock(ch + ich, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, use_temporal_conv=temporal_conv, device=device, dtype=self.dtype ) ] ch = model_channels * mult if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels layers.append( SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, device=device, dtype=self.dtype ) ) if self.temporal_attention: layers.append( TemporalTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, causal_attention=use_causal_attention, relative_position=use_relative_position, temporal_length=temporal_length, device=device, dtype=self.dtype ) ) if level and i == num_res_blocks: out_ch = ch layers.append( ResBlock(ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, up=True, device=device, dtype=self.dtype ) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) ds //= 2 self.output_blocks.append(TimestepEmbedSequential(*layers)) self.out = nn.Sequential( normalization(ch, device=device, dtype=self.dtype), nn.SiLU(), zero_module( operations.conv_nd( dims, model_channels, out_channels, 3, padding=1, device=device, dtype=self.dtype ) ), ) # TODO Add Transformer options to leverage the usage of patches. def forward( self, x, timesteps, context=None, context_in=None, cc_concat=None, num_video_frames=16, features_adapter=None, fs=None, img_emb=None, control=None, transformer_options={}, cond_idx=None, **kwargs ): if any([fs is None, img_emb is None, cc_concat is None]): raise ValueError("One or more of the required inputs for UNet Forward is None.") cond_idx = transformer_options.get("cond_idx", None) transformer_options['original_shape'] = list(x.shape) transformer_options['transformer_index'] = 0 transformer_patches = transformer_options.get("patches", {}) # In ComfyUI, the frames are always with the batch, so we deconstruct it here. # This is mandatory as this is a video based model. # We usually denote "f" as frames, but will use "t" (time) to be consistent with DynamiCrafter. b,_,t,_,_ = x.shape context = context_in cc_concat = cc_concat.to(x.device, x.dtype) x = torch.cat([x, cc_concat], dim=1) fs = fs.to(x.device, x.dtype) timestep = timesteps context = context_processor(context, num_video_frames, img_emb=img_emb) t_emb = timestep_embedding(timestep, self.model_channels, repeat_only=False, dtype=self.dtype) emb = self.time_embed(t_emb) emb = emb.repeat_interleave(repeats=t, dim=0) ## always in shape (b t) c h w, except for temporal layer x = rearrange(x, 'b c t h w -> (b t) c h w') ## combine emb if self.fs_condition: if fs is None: fs = torch.tensor( [self.default_fs] * b, dtype=torch.long, device=x.device) fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False, dtype=self.dtype).type(x.dtype) fs_embed = self.fps_embedding(fs_emb) fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0) emb = emb + fs_embed h = x.type(self.dtype) adapter_idx = 0 hs = [] for id, module in enumerate(self.input_blocks): transformer_options["block"] = ("input", id) #h = module(h, emb, context=context, batch_size=b) h = forward_timestep_embed( module, h, emb, context=context, batch_size=b, transformer_options=transformer_options ) h = apply_control(h, control, 'input', cond_idx) if "input_block_patch" in transformer_patches: patch = transformer_patches["input_block_patch"] for p in patch: h = p(h, transformer_options) if id ==0 and self.addition_attention: h = forward_timestep_embed( self.init_attn, h, emb, context=context, batch_size=b, transformer_options=transformer_options ) ## plug-in adapter features if ((id+1)%3 == 0) and features_adapter is not None: h = h + features_adapter[adapter_idx] adapter_idx += 1 hs.append(h) if "input_block_patch_after_skip" in transformer_patches: patch = transformer_patches["input_block_patch_after_skip"] for p in patch: h = p(h, transformer_options) if features_adapter is not None: assert len(features_adapter)==adapter_idx, 'Wrong features_adapter' transformer_options["block"] = ("middle", 0) h = forward_timestep_embed( self.middle_block, h, emb, context=context, batch_size=b, transformer_options=transformer_options ) h = apply_control(h, control, 'middle', cond_idx) for id, module in enumerate(self.output_blocks): transformer_options["block"] = ("output", id) hsp = hs.pop() hsp = apply_control(hsp, control, 'output', cond_idx) if "output_block_patch" in transformer_patches: patch = transformer_patches["output_block_patch"] for p in patch: h, hsp = p(h, hsp, transformer_options) h = torch.cat([h, hsp], dim=1) del hsp h = forward_timestep_embed( module, h, emb, context=context, batch_size=b, transformer_options=transformer_options ) h = h.type(x.dtype) h = self.out(h) # We output with the tensor unfolded framewise, then reshape them to batched using ComfyUI nodes. h = rearrange(h, '(b t) c h w -> b c t h w', t=num_video_frames) return h