import math import torch import torch.nn.functional as F import torch.nn as nn """ Code below ported from https://github.com/openai/consistencydecoder """ def _extract_into_tensor(arr, timesteps, broadcast_shape): # from: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/gaussian_diffusion.py#L895 """ res = arr[timesteps.to(torch.int).cpu()].float().to(timesteps.device) dims_to_append = len(broadcast_shape) - len(res.shape) return res[(...,) + (None,) * dims_to_append] def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): # from: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/gaussian_diffusion.py#L45 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas) class ConsistencyDecoder(torch.nn.Module): # From https://github.com/openai/consistencydecoder def __init__(self): super().__init__() self.model = ConvUNetVAE() self.n_distilled_steps = 64 sigma_data = 0.5 betas = betas_for_alpha_bar( 1024, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 ) alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod) self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod) sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod) sigmas = torch.sqrt(1.0 / alphas_cumprod - 1) self.c_skip = ( sqrt_recip_alphas_cumprod * sigma_data**2 / (sigmas**2 + sigma_data**2) ) self.c_out = sigmas * sigma_data / (sigmas**2 + sigma_data**2) ** 0.5 self.c_in = sqrt_recip_alphas_cumprod / (sigmas**2 + sigma_data**2) ** 0.5 @staticmethod def round_timesteps(timesteps, total_timesteps, n_distilled_steps, truncate_start=True): with torch.no_grad(): space = torch.div(total_timesteps, n_distilled_steps, rounding_mode="floor") rounded_timesteps = ( torch.div(timesteps, space, rounding_mode="floor") + 1 ) * space if truncate_start: rounded_timesteps[rounded_timesteps == total_timesteps] -= space else: rounded_timesteps[rounded_timesteps == total_timesteps] -= space rounded_timesteps[rounded_timesteps == 0] += space return rounded_timesteps @staticmethod def ldm_transform_latent(z, extra_scale_factor=1): channel_means = [0.38862467, 0.02253063, 0.07381133, -0.0171294] channel_stds = [0.9654121, 1.0440036, 0.76147926, 0.77022034] if len(z.shape) != 4: raise ValueError() z = z * 0.18215 channels = [z[:, i] for i in range(z.shape[1])] channels = [ extra_scale_factor * (c - channel_means[i]) / channel_stds[i] for i, c in enumerate(channels) ] return torch.stack(channels, dim=1) @torch.no_grad() def decode(self, features: torch.Tensor, schedule=[1.0, 0.5]): features = self.ldm_transform_latent(features) ts = self.round_timesteps( torch.arange(0, 1024), 1024, self.n_distilled_steps, truncate_start=False, ) shape = ( features.size(0), 3, 8 * features.size(2), 8 * features.size(3), ) x_start = torch.zeros(shape, device=features.device, dtype=features.dtype) schedule_timesteps = [int((1024 - 1) * s) for s in schedule] for i in schedule_timesteps: t = ts[i].item() t_ = torch.tensor([t] * features.shape[0], device=features.device) noise = torch.randn_like(x_start, device=features.device) x_start = ( _extract_into_tensor(self.sqrt_alphas_cumprod, t_, x_start.shape) * x_start + _extract_into_tensor( self.sqrt_one_minus_alphas_cumprod, t_, x_start.shape ) * noise ) c_in = _extract_into_tensor(self.c_in, t_, x_start.shape) model_output = self.model((c_in * x_start).to(features.dtype), t_, features=features) B, C = x_start.shape[:2] model_output, _ = torch.split(model_output, C, dim=1) pred_xstart = ( _extract_into_tensor(self.c_out, t_, x_start.shape) * model_output + _extract_into_tensor(self.c_skip, t_, x_start.shape) * x_start ).clamp(-1, 1) x_start = pred_xstart return x_start def encode(self, *args, **kwargs): raise NotImplementedError("ConsistencyDecoder can't be used for encoding!") """ Model definitions ported from: https://gist.github.com/madebyollin/865fa6a18d9099351ddbdfbe7299ccbf https://gist.github.com/mrsteyk/74ad3ec2f6f823111ae4c90e168505ac. """ class TimestepEmbedding(nn.Module): def __init__(self, n_time=1024, n_emb=320, n_out=1280) -> None: super().__init__() self.emb = nn.Embedding(n_time, n_emb) self.f_1 = nn.Linear(n_emb, n_out) self.f_2 = nn.Linear(n_out, n_out) def forward(self, x) -> torch.Tensor: x = self.emb(x) x = self.f_1(x) x = F.silu(x) return self.f_2(x) class ImageEmbedding(nn.Module): def __init__(self, in_channels=7, out_channels=320) -> None: super().__init__() self.f = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) def forward(self, x) -> torch.Tensor: return self.f(x) class ImageUnembedding(nn.Module): def __init__(self, in_channels=320, out_channels=6) -> None: super().__init__() self.gn = nn.GroupNorm(32, in_channels) self.f = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) def forward(self, x) -> torch.Tensor: return self.f(F.silu(self.gn(x))) class ConvResblock(nn.Module): def __init__(self, in_features=320, out_features=320) -> None: super().__init__() self.f_t = nn.Linear(1280, out_features * 2) self.gn_1 = nn.GroupNorm(32, in_features) self.f_1 = nn.Conv2d(in_features, out_features, kernel_size=3, padding=1) self.gn_2 = nn.GroupNorm(32, out_features) self.f_2 = nn.Conv2d(out_features, out_features, kernel_size=3, padding=1) skip_conv = in_features != out_features self.f_s = ( nn.Conv2d(in_features, out_features, kernel_size=1, padding=0) if skip_conv else nn.Identity() ) def forward(self, x, t): x_skip = x t = self.f_t(F.silu(t)) t = t.chunk(2, dim=1) t_1 = t[0].unsqueeze(dim=2).unsqueeze(dim=3) + 1 t_2 = t[1].unsqueeze(dim=2).unsqueeze(dim=3) gn_1 = F.silu(self.gn_1(x)) f_1 = self.f_1(gn_1) gn_2 = self.gn_2(f_1) return self.f_s(x_skip) + self.f_2(F.silu(gn_2 * t_1 + t_2)) # Also ConvResblock class Downsample(nn.Module): def __init__(self, in_channels=320) -> None: super().__init__() self.f_t = nn.Linear(1280, in_channels * 2) self.gn_1 = nn.GroupNorm(32, in_channels) self.f_1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) self.gn_2 = nn.GroupNorm(32, in_channels) self.f_2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) def forward(self, x, t) -> torch.Tensor: x_skip = x t = self.f_t(F.silu(t)) t_1, t_2 = t.chunk(2, dim=1) t_1 = t_1.unsqueeze(2).unsqueeze(3) + 1 t_2 = t_2.unsqueeze(2).unsqueeze(3) gn_1 = F.silu(self.gn_1(x)) avg_pool2d = F.avg_pool2d(gn_1, kernel_size=(2, 2), stride=None) f_1 = self.f_1(avg_pool2d) gn_2 = self.gn_2(f_1) f_2 = self.f_2(F.silu(t_2 + (t_1 * gn_2))) return f_2 + F.avg_pool2d(x_skip, kernel_size=(2, 2), stride=None) # Also ConvResblock class Upsample(nn.Module): def __init__(self, in_channels=1024) -> None: super().__init__() self.f_t = nn.Linear(1280, in_channels * 2) self.gn_1 = nn.GroupNorm(32, in_channels) self.f_1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) self.gn_2 = nn.GroupNorm(32, in_channels) self.f_2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) def forward(self, x, t) -> torch.Tensor: x_skip = x t = self.f_t(F.silu(t)) t_1, t_2 = t.chunk(2, dim=1) t_1 = t_1.unsqueeze(2).unsqueeze(3) + 1 t_2 = t_2.unsqueeze(2).unsqueeze(3) gn_1 = F.silu(self.gn_1(x)) upsample = F.interpolate(gn_1.float(), scale_factor=2, mode="nearest").to(gn_1.dtype) f_1 = self.f_1(upsample) gn_2 = self.gn_2(f_1) f_2 = self.f_2(F.silu(t_2 + (t_1 * gn_2))) return f_2 + F.interpolate(x_skip.float(), scale_factor=2, mode="nearest").to(x_skip.dtype) class ConvUNetVAE(nn.Module): def __init__(self) -> None: super().__init__() self.embed_image = ImageEmbedding() self.embed_time = TimestepEmbedding() down_0 = nn.ModuleList( [ ConvResblock(320, 320), ConvResblock(320, 320), ConvResblock(320, 320), Downsample(320), ] ) down_1 = nn.ModuleList( [ ConvResblock(320, 640), ConvResblock(640, 640), ConvResblock(640, 640), Downsample(640), ] ) down_2 = nn.ModuleList( [ ConvResblock(640, 1024), ConvResblock(1024, 1024), ConvResblock(1024, 1024), Downsample(1024), ] ) down_3 = nn.ModuleList( [ ConvResblock(1024, 1024), ConvResblock(1024, 1024), ConvResblock(1024, 1024), ] ) self.down = nn.ModuleList( [ down_0, down_1, down_2, down_3, ] ) self.mid = nn.ModuleList( [ ConvResblock(1024, 1024), ConvResblock(1024, 1024), ] ) up_3 = nn.ModuleList( [ ConvResblock(1024 * 2, 1024), ConvResblock(1024 * 2, 1024), ConvResblock(1024 * 2, 1024), ConvResblock(1024 * 2, 1024), Upsample(1024), ] ) up_2 = nn.ModuleList( [ ConvResblock(1024 * 2, 1024), ConvResblock(1024 * 2, 1024), ConvResblock(1024 * 2, 1024), ConvResblock(1024 + 640, 1024), Upsample(1024), ] ) up_1 = nn.ModuleList( [ ConvResblock(1024 + 640, 640), ConvResblock(640 * 2, 640), ConvResblock(640 * 2, 640), ConvResblock(320 + 640, 640), Upsample(640), ] ) up_0 = nn.ModuleList( [ ConvResblock(320 + 640, 320), ConvResblock(320 * 2, 320), ConvResblock(320 * 2, 320), ConvResblock(320 * 2, 320), ] ) self.up = nn.ModuleList( [ up_0, up_1, up_2, up_3, ] ) self.output = ImageUnembedding() def forward(self, x, t, features) -> torch.Tensor: x = torch.cat([x, F.interpolate(features.float(),scale_factor=8,mode="nearest").to(features.dtype)], dim=1) t = self.embed_time(t) x = self.embed_image(x) skips = [x] for down in self.down: for block in down: x = block(x, t) skips.append(x) for i in range(2): x = self.mid[i](x, t) for up in self.up[::-1]: for block in up: if isinstance(block, ConvResblock): x = torch.concat([x, skips.pop()], dim=1) x = block(x, t) return self.output(x)