import torchvision # Fix issue Unknown builtin op: torchvision::nms import cv2 import numpy as np import torch import torch.nn as nn from einops import rearrange from PIL import Image from custom_controlnet_aux.util import HWC3, resize_image_with_pad, common_input_validate, custom_hf_download, DENSEPOSE_MODEL_NAME from .densepose import DensePoseMaskedColormapResultsVisualizer, _extract_i_from_iuvarr, densepose_chart_predictor_output_to_result_with_confidences N_PART_LABELS = 24 class DenseposeDetector: def __init__(self, model): self.dense_pose_estimation = model self.device = "cpu" self.result_visualizer = DensePoseMaskedColormapResultsVisualizer( alpha=1, data_extractor=_extract_i_from_iuvarr, segm_extractor=_extract_i_from_iuvarr, val_scale = 255.0 / N_PART_LABELS ) @classmethod def from_pretrained(cls, pretrained_model_or_path=DENSEPOSE_MODEL_NAME, filename="densepose_r50_fpn_dl.torchscript"): torchscript_model_path = custom_hf_download(pretrained_model_or_path, filename) densepose = torch.jit.load(torchscript_model_path, map_location="cpu") return cls(densepose) def to(self, device): self.dense_pose_estimation.to(device) self.device = device return self def __call__(self, input_image, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", cmap="viridis", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) H, W = input_image.shape[:2] hint_image_canvas = np.zeros([H, W], dtype=np.uint8) hint_image_canvas = np.tile(hint_image_canvas[:, :, np.newaxis], [1, 1, 3]) input_image = rearrange(torch.from_numpy(input_image).to(self.device), 'h w c -> c h w') pred_boxes, corase_segm, fine_segm, u, v = self.dense_pose_estimation(input_image) extractor = densepose_chart_predictor_output_to_result_with_confidences densepose_results = [extractor(pred_boxes[i:i+1], corase_segm[i:i+1], fine_segm[i:i+1], u[i:i+1], v[i:i+1]) for i in range(len(pred_boxes))] if cmap=="viridis": self.result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_VIRIDIS hint_image = self.result_visualizer.visualize(hint_image_canvas, densepose_results) hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB) hint_image[:, :, 0][hint_image[:, :, 0] == 0] = 68 hint_image[:, :, 1][hint_image[:, :, 1] == 0] = 1 hint_image[:, :, 2][hint_image[:, :, 2] == 0] = 84 else: self.result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_PARULA hint_image = self.result_visualizer.visualize(hint_image_canvas, densepose_results) hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB) detected_map = remove_pad(HWC3(hint_image)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map