from custom_controlnet_aux.diffusion_edge.model import DiffusionEdge, prepare_args import numpy as np import torch from einops import rearrange from PIL import Image from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, DIFFUSION_EDGE_MODEL_NAME class DiffusionEdgeDetector: def __init__(self, model): self.model = model self.device = "cpu" @classmethod def from_pretrained(cls, pretrained_model_or_path=DIFFUSION_EDGE_MODEL_NAME, filename="diffusion_edge_indoor.pt"): model_path = custom_hf_download(pretrained_model_or_path, filename) model = DiffusionEdge(prepare_args(model_path)) return cls(model) def to(self, device): self.model.to(device) self.device = device return self def __call__(self, input_image, detect_resolution=512, patch_batch_size=8, output_type=None, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) with torch.no_grad(): input_image = rearrange(torch.from_numpy(input_image), "h w c -> 1 c h w") input_image = input_image.float() / 255. line = self.model(input_image, patch_batch_size) line = rearrange(line, "1 c h w -> h w c") detected_map = line.cpu().numpy().__mul__(255.).astype(np.uint8) detected_map = remove_pad(HWC3(detected_map)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map