model: model_type: const_sde model_name: cond_unet image_size: [320, 320] input_keys: ['image', 'cond'] ckpt_path: ignore_keys: [ ] only_model: False timesteps: 1000 train_sample: -1 sampling_timesteps: 1 loss_type: l2 objective: pred_noise start_dist: normal perceptual_weight: 0 scale_factor: 0.3 scale_by_std: True default_scale: True scale_by_softsign: False eps: !!float 1e-4 weighting_loss: False first_stage: embed_dim: 3 lossconfig: disc_start: 50001 kl_weight: 0.000001 disc_weight: 0.5 disc_in_channels: 1 ddconfig: double_z: True z_channels: 3 resolution: [ 320, 320 ] in_channels: 1 out_ch: 1 ch: 128 ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1 num_res_blocks: 2 attn_resolutions: [ ] dropout: 0.0 ckpt_path: unet: dim: 128 cond_net: swin without_pretrain: False channels: 3 out_mul: 1 dim_mults: [ 1, 2, 4, 4, ] # num_down = len(dim_mults) cond_in_dim: 3 cond_dim: 128 cond_dim_mults: [ 2, 4 ] # num_down = len(cond_dim_mults) # window_sizes1: [ [4, 4], [2, 2], [1, 1], [1, 1] ] # window_sizes2: [ [4, 4], [2, 2], [1, 1], [1, 1] ] window_sizes1: [ [ 8, 8 ], [ 4, 4 ], [ 2, 2 ], [ 1, 1 ] ] window_sizes2: [ [ 8, 8 ], [ 4, 4 ], [ 2, 2 ], [ 1, 1 ] ] fourier_scale: 16 cond_pe: False num_pos_feats: 128 cond_feature_size: [ 80, 80 ] data: name: edge img_folder: '/data/yeyunfan/edge_detection_datasets/datasets/BSDS_test' augment_horizontal_flip: True batch_size: 8 num_workers: 4 sampler: sample_type: "slide" stride: [240, 240] batch_size: 1 sample_num: 300 use_ema: True save_folder: ckpt_path: