# This is an improved version and model of HED edge detection with Apache License, Version 2.0. # Please use this implementation in your products # This implementation may produce slightly different results from Saining Xie's official implementations, # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. # Different from official models and other implementations, this is an RGB-input model (rather than BGR) # and in this way it works better for gradio's RGB protocol import os import warnings import cv2 import numpy as np import torch from einops import rearrange from PIL import Image from custom_controlnet_aux.util import HWC3, nms, resize_image_with_pad, safe_step, common_input_validate, custom_hf_download, HF_MODEL_NAME class DoubleConvBlock(torch.nn.Module): def __init__(self, input_channel, output_channel, layer_number): super().__init__() self.convs = torch.nn.Sequential() self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) for i in range(1, layer_number): self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) def __call__(self, x, down_sampling=False): h = x if down_sampling: h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) for conv in self.convs: h = conv(h) h = torch.nn.functional.relu(h) return h, self.projection(h) class ControlNetHED_Apache2(torch.nn.Module): def __init__(self): super().__init__() self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) def __call__(self, x): h = x - self.norm h, projection1 = self.block1(h) h, projection2 = self.block2(h, down_sampling=True) h, projection3 = self.block3(h, down_sampling=True) h, projection4 = self.block4(h, down_sampling=True) h, projection5 = self.block5(h, down_sampling=True) return projection1, projection2, projection3, projection4, projection5 class HEDdetector: def __init__(self, netNetwork): self.netNetwork = netNetwork self.device = "cpu" @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="ControlNetHED.pth"): model_path = custom_hf_download(pretrained_model_or_path, filename) netNetwork = ControlNetHED_Apache2() netNetwork.load_state_dict(torch.load(model_path, map_location='cpu')) netNetwork.float().eval() return cls(netNetwork) def to(self, device): self.netNetwork.to(device) self.device = device return self def __call__(self, input_image, detect_resolution=512, safe=False, output_type="pil", scribble=False, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) assert input_image.ndim == 3 H, W, C = input_image.shape with torch.no_grad(): image_hed = torch.from_numpy(input_image).float().to(self.device) image_hed = rearrange(image_hed, 'h w c -> 1 c h w') edges = self.netNetwork(image_hed) edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] edges = np.stack(edges, axis=2) edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) if safe: edge = safe_step(edge) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) detected_map = edge if scribble: detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 detected_map = HWC3(remove_pad(detected_map)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map