import os import cv2 import numpy as np import torch from PIL import Image from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME from .leres.depthmap import estimateboost, estimateleres from .leres.multi_depth_model_woauxi import RelDepthModel from .leres.net_tools import strip_prefix_if_present from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel from .pix2pix.options.test_options import TestOptions class LeresDetector: def __init__(self, model, pix2pixmodel): self.model = model self.pix2pixmodel = pix2pixmodel @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="res101.pth", pix2pix_filename="latest_net_G.pth"): model_path = custom_hf_download(pretrained_model_or_path, filename) checkpoint = torch.load(model_path, map_location=torch.device('cpu')) model = RelDepthModel(backbone='resnext101') model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True) del checkpoint pix2pix_model_path = custom_hf_download(pretrained_model_or_path, pix2pix_filename) opt = TestOptions().parse() if not torch.cuda.is_available(): opt.gpu_ids = [] # cpu mode pix2pixmodel = Pix2Pix4DepthModel(opt) pix2pixmodel.save_dir = os.path.dirname(pix2pix_model_path) pix2pixmodel.load_networks('latest') pix2pixmodel.eval() return cls(model, pix2pixmodel) def to(self, device): self.model.to(device) # TODO - refactor pix2pix implementation to support device migration # self.pix2pixmodel.to(device) return self def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) with torch.no_grad(): if boost: depth = estimateboost(detected_map, self.model, 0, self.pix2pixmodel, max(detected_map.shape[1], detected_map.shape[0])) else: depth = estimateleres(detected_map, self.model, detected_map.shape[1], detected_map.shape[0]) numbytes=2 depth_min = depth.min() depth_max = depth.max() max_val = (2**(8*numbytes))-1 # check output before normalizing and mapping to 16 bit if depth_max - depth_min > np.finfo("float").eps: out = max_val * (depth - depth_min) / (depth_max - depth_min) else: out = np.zeros(depth.shape) # single channel, 16 bit image depth_image = out.astype("uint16") # convert to uint8 depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0)) # remove near if thr_a != 0: thr_a = ((thr_a/100)*255) depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1] # invert image depth_image = cv2.bitwise_not(depth_image) # remove bg if thr_b != 0: thr_b = ((thr_b/100)*255) depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1] detected_map = HWC3(remove_pad(depth_image)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map