import os import cv2 import numpy as np import torch from einops import rearrange from PIL import Image from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME from .api import MiDaSInference class MidasDetector: def __init__(self, model): self.model = model self.device = "cpu" @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, model_type="dpt_hybrid", filename="dpt_hybrid-midas-501f0c75.pt"): subfolder = "annotator/ckpts" if pretrained_model_or_path == "lllyasviel/ControlNet" else '' model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder=subfolder) model = MiDaSInference(model_type=model_type, model_path=model_path) return cls(model) def to(self, device): self.model.to(device) self.device = device return self def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, depth_and_normal=False, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) image_depth = detected_map with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float() image_depth = image_depth.to(self.device) image_depth = image_depth / 127.5 - 1.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model(image_depth)[0] depth_pt = depth.clone() depth_pt -= torch.min(depth_pt) depth_pt /= torch.max(depth_pt) depth_pt = depth_pt.cpu().numpy() depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) if depth_and_normal: depth_np = depth.cpu().numpy() x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) z = np.ones_like(x) * a x[depth_pt < bg_th] = 0 y[depth_pt < bg_th] = 0 normal = np.stack([x, y, z], axis=2) normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5 normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1] depth_image = HWC3(depth_image) if depth_and_normal: normal_image = HWC3(normal_image) depth_image = remove_pad(depth_image) if depth_and_normal: normal_image = remove_pad(normal_image) if output_type == "pil": depth_image = Image.fromarray(depth_image) if depth_and_normal: normal_image = Image.fromarray(normal_image) if depth_and_normal: return depth_image, normal_image else: return depth_image