import os import warnings import cv2 import numpy as np import torch from PIL import Image from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME from .models.mbv2_mlsd_large import MobileV2_MLSD_Large from .utils import pred_lines class MLSDdetector: def __init__(self, model): self.model = model @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="mlsd_large_512_fp32.pth"): subfolder = "annotator/ckpts" if pretrained_model_or_path == "lllyasviel/ControlNet" else '' model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder=subfolder) model = MobileV2_MLSD_Large() model.load_state_dict(torch.load(model_path), strict=True) model.eval() return cls(model) def to(self, device): self.model.to(device) return self def __call__(self, input_image, thr_v=0.1, thr_d=0.1, detect_resolution=512, output_type="pil", upscale_method="INTER_AREA", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) img = detected_map img_output = np.zeros_like(img) try: with torch.no_grad(): lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) for line in lines: x_start, y_start, x_end, y_end = [int(val) for val in line] cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) except Exception as e: pass detected_map = remove_pad(HWC3(img_output[:, :, 0])) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map