import os import types import warnings import cv2 import numpy as np import torch import torchvision.transforms as transforms from einops import rearrange from PIL import Image from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME from .nets.NNET import NNET # load model def load_checkpoint(fpath, model): ckpt = torch.load(fpath, map_location='cpu')['model'] load_dict = {} for k, v in ckpt.items(): if k.startswith('module.'): k_ = k.replace('module.', '') load_dict[k_] = v else: load_dict[k] = v model.load_state_dict(load_dict) return model class NormalBaeDetector: def __init__(self, model): self.model = model self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.device = "cpu" @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="scannet.pt"): model_path = custom_hf_download(pretrained_model_or_path, filename) args = types.SimpleNamespace() args.mode = 'client' args.architecture = 'BN' args.pretrained = 'scannet' args.sampling_ratio = 0.4 args.importance_ratio = 0.7 model = NNET(args) model = load_checkpoint(model_path, model) model.eval() return cls(model) def to(self, device): self.model.to(device) self.device = device return self def __call__(self, input_image, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) image_normal = detected_map with torch.no_grad(): image_normal = torch.from_numpy(image_normal).float().to(self.device) image_normal = image_normal / 255.0 image_normal = rearrange(image_normal, 'h w c -> 1 c h w') image_normal = self.norm(image_normal) normal = self.model(image_normal) normal = normal[0][-1][:, :3] # d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5 # d = torch.maximum(d, torch.ones_like(d) * 1e-5) # normal /= d normal = ((normal + 1) * 0.5).clip(0, 1) normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy() normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8) detected_map = remove_pad(HWC3(normal_image)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map