import os from .api import make_detectron2_model, semantic_run from pathlib import Path import warnings from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME import numpy as np import cv2 from PIL import Image DEFAULT_CONFIGS = { "coco": { "name": "150_16_swin_l_oneformer_coco_100ep.pth", "config": os.path.join(os.path.dirname(__file__), 'configs/coco/oneformer_swin_large_IN21k_384_bs16_100ep.yaml') }, "ade20k": { "name": "250_16_swin_l_oneformer_ade20k_160k.pth", "config": os.path.join(os.path.dirname(__file__), 'configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml') } } class OneformerSegmentor: def __init__(self, model, metadata): self.model = model self.metadata = metadata def to(self, device): self.model.model.to(device) return self @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="250_16_swin_l_oneformer_ade20k_160k.pth", config_path = None): config_path = config_path or DEFAULT_CONFIGS["ade20k" if "ade20k" in filename else "coco"]["config"] model_path = custom_hf_download(pretrained_model_or_path, filename) model, metadata = make_detectron2_model(config_path, model_path) return cls(model, metadata) def __call__(self, input_image=None, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) detected_map = semantic_run(input_image, self.model, self.metadata) detected_map = remove_pad(HWC3(detected_map)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map