import os import warnings import cv2 import numpy as np import torch from einops import rearrange from PIL import Image from custom_controlnet_aux.util import HWC3, nms, resize_image_with_pad, safe_step,common_input_validate, custom_hf_download, HF_MODEL_NAME from .model import pidinet class PidiNetDetector: def __init__(self, netNetwork): self.netNetwork = netNetwork self.device = "cpu" @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="table5_pidinet.pth"): model_path = custom_hf_download(pretrained_model_or_path, filename) netNetwork = pidinet() netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()}) netNetwork.eval() return cls(netNetwork) def to(self, device): self.netNetwork.to(device) self.device = device return self def __call__(self, input_image, detect_resolution=512, safe=False, output_type="pil", scribble=False, apply_filter=False, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) detected_map = detected_map[:, :, ::-1].copy() with torch.no_grad(): image_pidi = torch.from_numpy(detected_map).float().to(self.device) image_pidi = image_pidi / 255.0 image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') edge = self.netNetwork(image_pidi)[-1] edge = edge.cpu().numpy() if apply_filter: edge = edge > 0.5 if safe: edge = safe_step(edge) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) detected_map = edge[0, 0] if scribble: detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 detected_map = HWC3(remove_pad(detected_map)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map