import warnings import cv2 import numpy as np from PIL import Image from custom_controlnet_aux.util import HWC3, resize_image_with_pad, common_input_validate, HWC3 #Not to be confused with "scribble" from HED. That is "fake scribble" which is more accurate and less picky than this. class ScribbleDetector: def __call__(self, input_image=None, detect_resolution=512, output_type=None, upscale_method="INTER_AREA", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) detected_map = np.zeros_like(input_image, dtype=np.uint8) detected_map[np.min(input_image, axis=2) < 127] = 255 detected_map = 255 - detected_map detected_map = remove_pad(detected_map) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map class ScribbleXDog_Detector: def __call__(self, input_image=None, detect_resolution=512, thr_a=32, output_type=None, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) g1 = cv2.GaussianBlur(input_image.astype(np.float32), (0, 0), 0.5) g2 = cv2.GaussianBlur(input_image.astype(np.float32), (0, 0), 5.0) dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8) result = np.zeros_like(input_image, dtype=np.uint8) result[2 * (255 - dog) > thr_a] = 255 #result = 255 - result detected_map = HWC3(remove_pad(result)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map