""" Hello, welcome on board, """ from __future__ import print_function import os import cv2 import numpy as np import torch from .ted import TED # TEED architecture from einops import rearrange from custom_controlnet_aux.util import safe_step, custom_hf_download, BDS_MODEL_NAME, common_input_validate, resize_image_with_pad, HWC3 from PIL import Image class TEDDetector: def __init__(self, model): self.model = model self.device = "cpu" @classmethod def from_pretrained(cls, pretrained_model_or_path=BDS_MODEL_NAME, filename="7_model.pth", subfolder="Annotators"): model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder=subfolder) model = TED() model.load_state_dict(torch.load(model_path, map_location='cpu')) model.eval() return cls(model) def to(self, device): self.model.to(device) self.device = device return self def __call__(self, input_image, detect_resolution=512, safe_steps=2, upscale_method="INTER_CUBIC", output_type="pil", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) H, W, _ = input_image.shape with torch.no_grad(): image_teed = torch.from_numpy(input_image.copy()).float().to(self.device) image_teed = rearrange(image_teed, 'h w c -> 1 c h w') edges = self.model(image_teed) edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] edges = np.stack(edges, axis=2) edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) if safe_steps != 0: edge = safe_step(edge, safe_steps) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) detected_map = remove_pad(HWC3(edge)) if output_type == "pil": detected_map = Image.fromarray(detected_map[..., :3]) return detected_map