import os from .inference import init_segmentor, inference_segmentor, show_result_pyplot import warnings import cv2 import numpy as np from PIL import Image from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME import torch from custom_mmpkg.custom_mmseg.core.evaluation import get_palette config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "upernet_global_small.py") class UniformerSegmentor: def __init__(self, netNetwork): self.model = netNetwork @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="upernet_global_small.pth"): model_path = custom_hf_download(pretrained_model_or_path, filename) netNetwork = init_segmentor(config_file, model_path, device="cpu") netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()}) netNetwork.eval() return cls(netNetwork) def to(self, device): self.model.to(device) return self def _inference(self, img): if next(self.model.parameters()).device.type == 'mps': # adaptive_avg_pool2d can fail on MPS, workaround with CPU import torch.nn.functional orig_adaptive_avg_pool2d = torch.nn.functional.adaptive_avg_pool2d def cpu_if_exception(input, *args, **kwargs): try: return orig_adaptive_avg_pool2d(input, *args, **kwargs) except: return orig_adaptive_avg_pool2d(input.cpu(), *args, **kwargs).to(input.device) try: torch.nn.functional.adaptive_avg_pool2d = cpu_if_exception result = inference_segmentor(self.model, img) finally: torch.nn.functional.adaptive_avg_pool2d = orig_adaptive_avg_pool2d else: result = inference_segmentor(self.model, img) res_img = show_result_pyplot(self.model, img, result, get_palette('ade'), opacity=1) return res_img def __call__(self, input_image=None, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) detected_map = self._inference(input_image) detected_map = remove_pad(HWC3(detected_map)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map