import os import cv2 import numpy as np import torch from einops import rearrange from PIL import Image from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME, DEPTH_ANYTHING_MODEL_NAME from .zoedepth.models.zoedepth.zoedepth_v1 import ZoeDepth from .zoedepth.models.zoedepth_anything.zoedepth_v1 import ZoeDepth as ZoeDepthAnything from .zoedepth.utils.config import get_config class ZoeDetector: def __init__(self, model): self.model = model self.device = "cpu" @classmethod def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="ZoeD_M12_N.pt"): model_path = custom_hf_download(pretrained_model_or_path, filename) conf = get_config("zoedepth", "infer") model = ZoeDepth.build_from_config(conf) model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['model']) model.eval() return cls(model) def to(self, device): self.model.to(device) self.device = device return self def __call__(self, input_image, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) image_depth = input_image with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float().to(self.device) image_depth = image_depth / 255.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model.infer(image_depth) depth = depth[0, 0].cpu().numpy() vmin = np.percentile(depth, 2) vmax = np.percentile(depth, 85) depth -= vmin depth /= vmax - vmin depth = 1.0 - depth depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) detected_map = remove_pad(HWC3(depth_image)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map class ZoeDepthAnythingDetector: def __init__(self, model): self.model = model self.device = "cpu" @classmethod def from_pretrained(cls, pretrained_model_or_path=DEPTH_ANYTHING_MODEL_NAME, filename="depth_anything_metric_depth_indoor.pt"): model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder="checkpoints_metric_depth", repo_type="space") conf = get_config("zoedepth", "infer") model = ZoeDepthAnything.build_from_config(conf) model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['model']) model.eval() return cls(model) def to(self, device): self.model.to(device) self.device = device return self def __call__(self, input_image, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) image_depth = input_image with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float().to(self.device) image_depth = image_depth / 255.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model.infer(image_depth) depth = depth[0, 0].cpu().numpy() vmin = np.percentile(depth, 2) vmax = np.percentile(depth, 85) depth -= vmin depth /= vmax - vmin depth = 1.0 - depth depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) detected_map = remove_pad(HWC3(depth_image)) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map