Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import torch | |
| from torch.utils.data import Dataset | |
| import json | |
| import sys | |
| sys.path.append("../") | |
| from datasets.dataset_loader import SpatialDataset | |
| from transformers import RobertaTokenizer, BertTokenizer | |
| class WHGDataset(SpatialDataset): | |
| # initializes dataset loader and converts dataset python object | |
| def __init__(self, data_file_path, tokenizer=None,max_token_len = 512, distance_norm_factor = 1, spatial_dist_fill=100, sep_between_neighbors = False): | |
| if tokenizer is None: | |
| self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| else: | |
| self.tokenizer = tokenizer | |
| self.read_data(data_file_path) | |
| self.max_token_len = max_token_len | |
| self.distance_norm_factor = distance_norm_factor | |
| self.spatial_dist_fill = spatial_dist_fill | |
| self.sep_between_neighbors = sep_between_neighbors | |
| # returns a specific item from the dataset given an index | |
| def __getitem__(self, idx): | |
| return self.load_data(idx) | |
| # returns the length of the dataset loaded | |
| def __len__(self): | |
| return self.len_data | |
| def get_average_distance(self,idx): | |
| line = self.data[idx] | |
| line_data_dict = json.loads(line) | |
| pivot_pos = line_data_dict['info']['geometry']['coordinates'] | |
| neighbor_geom_list = line_data_dict['neighbor_info']['geometry_list'] | |
| lat_diff = 0 | |
| lng_diff = 0 | |
| for neighbor in neighbor_geom_list: | |
| coordinates = neighbor['coordinates'] | |
| lat_diff = lat_diff + (abs(pivot_pos[0]-coordinates[0])) | |
| lng_diff = lng_diff + (abs(pivot_pos[1]-coordinates[1])) | |
| avg_lat_diff = lat_diff/len(neighbor_geom_list) | |
| avg_lng_diff = lng_diff/len(neighbor_geom_list) | |
| return (avg_lat_diff, avg_lng_diff) | |
| # reads dataset from given filepath, run on initilization | |
| def read_data(self, data_file_path): | |
| with open(data_file_path, 'r') as f: | |
| data = f.readlines() | |
| len_data = len(data) | |
| self.len_data = len_data | |
| self.data = data | |
| # loads and parses dataset | |
| def load_data(self, idx): | |
| line = self.data[idx] | |
| line_data_dict = json.loads(line) | |
| # get pivot info | |
| pivot_name = str(line_data_dict['info']['name']) | |
| pivot_pos = line_data_dict['info']['geometry']['coordinates'] | |
| # get neighbor info | |
| neighbor_info = line_data_dict['neighbor_info'] | |
| neighbor_name_list = neighbor_info['name_list'] | |
| neighbor_geom_list = neighbor_info['geometry_list'] | |
| parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geom_list, self.spatial_dist_fill) | |
| parsed_data['qid'] = line_data_dict['info']['qid'] | |
| return parsed_data | |