Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -214,59 +214,6 @@ def load_reviews_from_file(file_path):
|
|
| 214 |
st.error(f"File not found: {file_path}")
|
| 215 |
return reviews
|
| 216 |
|
| 217 |
-
# Function to load reviews from a CSV file
|
| 218 |
-
def load_reviews_from_csv(file_path):
|
| 219 |
-
try:
|
| 220 |
-
df = pd.read_csv(file_path)
|
| 221 |
-
return df
|
| 222 |
-
except FileNotFoundError:
|
| 223 |
-
st.error(f"File not found: {file_path}")
|
| 224 |
-
return None
|
| 225 |
-
|
| 226 |
-
# Function to process each review in the CSV and get the model's predictions
|
| 227 |
-
def process_csv_reviews(df):
|
| 228 |
-
true_reviews = []
|
| 229 |
-
for _, row in df.iterrows():
|
| 230 |
-
review_text = row['Review']
|
| 231 |
-
label = row['Label']
|
| 232 |
-
|
| 233 |
-
# Get BERT embedding for the review text
|
| 234 |
-
bert_embedding = get_bert_embedding(review_text.lower())
|
| 235 |
-
|
| 236 |
-
# Get SpaBERT embedding for geo-entities
|
| 237 |
-
spaBert_embedding, _ = processSpatialEntities(review_text, nlp)
|
| 238 |
-
|
| 239 |
-
# Concatenate BERT and SpaBERT embeddings
|
| 240 |
-
combined_embedding = torch.cat((bert_embedding, spaBert_embedding), dim=-1)
|
| 241 |
-
|
| 242 |
-
# Get model prediction
|
| 243 |
-
prediction = get_prediction(combined_embedding)
|
| 244 |
-
|
| 245 |
-
# If prediction is "Not Spam" (0), store the review
|
| 246 |
-
if prediction == 0:
|
| 247 |
-
true_reviews.append((review_text, label))
|
| 248 |
-
|
| 249 |
-
# Convert to a DataFrame for easy display
|
| 250 |
-
return pd.DataFrame(true_reviews, columns=['Review', 'Label'])
|
| 251 |
-
|
| 252 |
-
st.write("### Process Filtered Reviews CSV")
|
| 253 |
-
csv_file_path = "models/spabert/datasets/filtered_reviews.csv"
|
| 254 |
-
|
| 255 |
-
if st.button("Process CSV and Find True Reviews"):
|
| 256 |
-
# Load the CSV file
|
| 257 |
-
df = load_reviews_from_csv(csv_file_path)
|
| 258 |
-
|
| 259 |
-
if df is not None:
|
| 260 |
-
# Filter reviews predicted to be "Not Spam"
|
| 261 |
-
true_reviews_df = process_csv_reviews(df)
|
| 262 |
-
|
| 263 |
-
if not true_reviews_df.empty:
|
| 264 |
-
st.write("### Reviews Predicted to be Not Spam:")
|
| 265 |
-
st.dataframe(true_reviews_df)
|
| 266 |
-
else:
|
| 267 |
-
st.write("No reviews were predicted to be Not Spam.")
|
| 268 |
-
else:
|
| 269 |
-
st.error("Could not load CSV file.")
|
| 270 |
|
| 271 |
|
| 272 |
#Demo Section
|
|
|
|
| 214 |
st.error(f"File not found: {file_path}")
|
| 215 |
return reviews
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
|
| 219 |
#Demo Section
|