Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,20 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
text = st.text_area('enter some text!')
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
+
from PIL import Image
|
| 4 |
|
| 5 |
+
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
|
|
|
| 6 |
|
| 7 |
+
st.title("Hot Dog? Or Not?")
|
| 8 |
+
|
| 9 |
+
file_name = st.file_uploader("Upload a hot dog candidate image")
|
| 10 |
+
|
| 11 |
+
if file_name is not None:
|
| 12 |
+
col1, col2 = st.columns(2)
|
| 13 |
+
|
| 14 |
+
image = Image.open(file_name)
|
| 15 |
+
col1.image(image, use_column_width=True)
|
| 16 |
+
predictions = pipeline(image)
|
| 17 |
+
|
| 18 |
+
col2.header("Probabilities")
|
| 19 |
+
for p in predictions:
|
| 20 |
+
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
|