import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os MODEL_NAME = "tiiuae/Falcon3-7B-Base" access_token = os.getenv("HF_ACCESS_TOKEN") tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, trust_remote_code=True, token=access_token) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, token=access_token ) def improve_code(code: str) -> str: prompt = ( "You are an expert code assistant.\n" "Given the following code, suggest an improved version with clear comments and best practices.\n" "Output only the improved code.\n\n" f"Original code:\n{code}\n\nImproved code:" ) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=512, temperature=0.2, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id ) generated = tokenizer.decode(outputs[0], skip_special_tokens=True) improved = generated.split("Improved code:")[-1].strip() return improved app = gr.Blocks() with app: gr.Markdown("## MCP Server Code Improver with Falcon3-7B-Base") code_input = gr.Textbox(label="Original code", lines=15) improve_btn = gr.Button("Improve Code") code_output = gr.Textbox(label="Improved code", lines=15) improve_btn.click(improve_code, inputs=code_input, outputs=code_output) app.launch()