Update app.py
Browse files
app.py
CHANGED
@@ -10,12 +10,6 @@ import torch
|
|
10 |
import random
|
11 |
from openai import OpenAI
|
12 |
import subprocess
|
13 |
-
import threading
|
14 |
-
import queue
|
15 |
-
import sounddevice as sd
|
16 |
-
import numpy as np
|
17 |
-
import wave
|
18 |
-
import sys
|
19 |
|
20 |
default_lang = "en"
|
21 |
|
@@ -118,90 +112,18 @@ def models(text, model="Llama 3 8B Service", seed=42):
|
|
118 |
|
119 |
return output
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
print(status, file=sys.stderr)
|
130 |
-
audio_queue.put(indata.copy())
|
131 |
-
|
132 |
-
def process_audio_stream(model, seed):
|
133 |
-
global is_listening
|
134 |
-
audio_buffer = []
|
135 |
-
silence_threshold = 0.01
|
136 |
-
silence_duration = 0
|
137 |
-
max_silence = 2 # seconds
|
138 |
-
|
139 |
-
while True:
|
140 |
-
if not is_listening:
|
141 |
-
audio_buffer.clear()
|
142 |
-
silence_duration = 0
|
143 |
-
audio_queue.queue.clear()
|
144 |
-
continue
|
145 |
-
|
146 |
-
try:
|
147 |
-
chunk = audio_queue.get(timeout=1)
|
148 |
-
audio_buffer.append(chunk)
|
149 |
-
|
150 |
-
# Check for silence
|
151 |
-
if np.abs(chunk).mean() < silence_threshold:
|
152 |
-
silence_duration += CHUNK / RATE
|
153 |
-
else:
|
154 |
-
silence_duration = 0
|
155 |
-
|
156 |
-
if silence_duration > max_silence:
|
157 |
-
# Process the buffered audio
|
158 |
-
audio_data = np.concatenate(audio_buffer)
|
159 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
160 |
-
tmp_path = tmp_file.name
|
161 |
-
with wave.open(tmp_path, 'wb') as wf:
|
162 |
-
wf.setnchannels(1)
|
163 |
-
wf.setsampwidth(2)
|
164 |
-
wf.setframerate(RATE)
|
165 |
-
wf.writeframes((audio_data * 32767).astype(np.int16).tobytes())
|
166 |
-
|
167 |
-
# Transcribe and process
|
168 |
-
user_input = transcribe(tmp_path)
|
169 |
-
if user_input:
|
170 |
-
is_listening = False
|
171 |
-
reply = models(user_input, model, seed)
|
172 |
-
asyncio.run(respond_and_play(reply))
|
173 |
-
is_listening = True
|
174 |
-
|
175 |
-
# Clear the buffer
|
176 |
-
audio_buffer.clear()
|
177 |
-
silence_duration = 0
|
178 |
-
|
179 |
-
except queue.Empty:
|
180 |
-
pass
|
181 |
-
|
182 |
-
async def respond_and_play(text):
|
183 |
-
communicate = edge_tts.Communicate(text, voice="en-US-ChristopherNeural")
|
184 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
185 |
tmp_path = tmp_file.name
|
186 |
await communicate.save(tmp_path)
|
187 |
-
|
188 |
-
# Play the audio
|
189 |
-
with wave.open(tmp_path, 'rb') as wf:
|
190 |
-
data = wf.readframes(wf.getnframes())
|
191 |
-
sd.play(np.frombuffer(data, dtype=np.int16), wf.getframerate())
|
192 |
-
sd.wait()
|
193 |
-
|
194 |
-
def start_listening(model, seed):
|
195 |
-
global is_listening
|
196 |
-
is_listening = True
|
197 |
-
threading.Thread(target=process_audio_stream, args=(model, seed), daemon=True).start()
|
198 |
-
with sd.InputStream(callback=audio_callback, channels=1, samplerate=RATE, blocksize=CHUNK):
|
199 |
-
while is_listening:
|
200 |
-
sd.sleep(100)
|
201 |
-
|
202 |
-
def stop_listening():
|
203 |
-
global is_listening
|
204 |
-
is_listening = False
|
205 |
|
206 |
# Supported languages for seamless-expressive
|
207 |
LANGUAGE_CODES = {
|
@@ -276,21 +198,17 @@ with gr.Blocks(css="style.css") as demo:
|
|
276 |
value=0,
|
277 |
visible=False
|
278 |
)
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
282 |
|
283 |
-
|
284 |
-
fn=
|
285 |
-
inputs=[select, seed],
|
286 |
-
outputs=[
|
287 |
-
|
288 |
-
)
|
289 |
-
stop_button.click(
|
290 |
-
fn=stop_listening,
|
291 |
-
inputs=[],
|
292 |
-
outputs=[status],
|
293 |
-
_js="() => {document.getElementById('status').textContent = 'Status: Not listening'}"
|
294 |
)
|
295 |
|
296 |
with gr.TabItem("Speech Translation") as speech_translation:
|
|
|
10 |
import random
|
11 |
from openai import OpenAI
|
12 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
default_lang = "en"
|
15 |
|
|
|
112 |
|
113 |
return output
|
114 |
|
115 |
+
async def respond(audio, model, seed):
|
116 |
+
if audio is None:
|
117 |
+
return None
|
118 |
+
user = transcribe(audio)
|
119 |
+
if not user:
|
120 |
+
return None
|
121 |
+
reply = models(user, model, seed)
|
122 |
+
communicate = edge_tts.Communicate(reply, voice="en-US-ChristopherNeural")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
124 |
tmp_path = tmp_file.name
|
125 |
await communicate.save(tmp_path)
|
126 |
+
return tmp_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# Supported languages for seamless-expressive
|
129 |
LANGUAGE_CODES = {
|
|
|
198 |
value=0,
|
199 |
visible=False
|
200 |
)
|
201 |
+
input = gr.Audio(label="User", sources=["microphone"], type="filepath")
|
202 |
+
output = gr.Audio(label="AI", type="filepath",
|
203 |
+
interactive=False,
|
204 |
+
autoplay=True,
|
205 |
+
elem_classes="audio")
|
206 |
|
207 |
+
gr.Interface(
|
208 |
+
fn=respond,
|
209 |
+
inputs=[input, select, seed],
|
210 |
+
outputs=[output],
|
211 |
+
live=True
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
)
|
213 |
|
214 |
with gr.TabItem("Speech Translation") as speech_translation:
|