Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,75 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
import pdfplumber
|
4 |
-
import docx
|
5 |
-
import pandas as pd
|
6 |
-
from PIL import Image
|
7 |
-
from io import BytesIO
|
8 |
-
import base64
|
9 |
-
import whisper
|
10 |
from openai import OpenAI
|
|
|
|
|
|
|
11 |
|
12 |
-
# Load
|
13 |
-
whisper_model = whisper.load_model("base")
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Load Groq API key
|
19 |
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
20 |
|
21 |
-
# Initialize
|
22 |
client = OpenAI(
|
23 |
api_key=GROQ_API_KEY,
|
24 |
base_url="https://api.groq.com/openai/v1"
|
25 |
)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
32 |
-
elif file.name.endswith(".docx"):
|
33 |
-
doc = docx.Document(file.name)
|
34 |
-
text = "\n".join(p.text for p in doc.paragraphs)
|
35 |
-
elif file.name.endswith(".xlsx"):
|
36 |
-
df = pd.read_excel(file.name)
|
37 |
-
text = df.to_string()
|
38 |
-
elif file.name.endswith((".png", ".jpg", ".jpeg")):
|
39 |
-
img = Image.open(file.name)
|
40 |
-
buffer = BytesIO()
|
41 |
-
img.save(buffer, format="PNG")
|
42 |
-
encoded = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
43 |
-
text = f"[Image uploaded: data:image/png;base64,{encoded[:100]}... (truncated)]"
|
44 |
-
else:
|
45 |
-
with open(file.name, "r", encoding="utf-8", errors="ignore") as f:
|
46 |
-
text = f.read()
|
47 |
-
return text
|
48 |
-
|
49 |
-
def transcribe_audio(audio_path):
|
50 |
-
result = whisper_model.transcribe(audio_path)
|
51 |
-
return result["text"]
|
52 |
-
|
53 |
-
def generate_reply(history):
|
54 |
-
messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
55 |
-
for user_msg, bot_msg in history:
|
56 |
-
messages.append({"role": "user", "content": user_msg})
|
57 |
-
messages.append({"role": "assistant", "content": bot_msg})
|
58 |
|
|
|
|
|
|
|
|
|
59 |
response = client.chat.completions.create(
|
60 |
model="llama3-8b-8192",
|
61 |
-
messages=
|
62 |
-
temperature=0.7
|
63 |
)
|
|
|
64 |
reply = response.choices[0].message.content
|
65 |
-
return reply
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
def
|
73 |
-
if
|
74 |
-
return
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
return message
|
81 |
-
transcription = transcribe_audio(audio)
|
82 |
-
return f"{message}\n\n--- Transcription ---\n{transcription}"
|
83 |
|
84 |
-
|
85 |
-
gr.
|
86 |
-
chatbot = gr.Chatbot(label="Chat", elem_id="chatbox", height=450, type="messages")
|
87 |
|
88 |
with gr.Row():
|
89 |
-
txt = gr.Textbox(placeholder="Type a message or
|
90 |
-
send_btn = gr.Button("Send"
|
91 |
|
92 |
with gr.Row():
|
93 |
-
|
94 |
-
|
95 |
|
96 |
-
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
audio_in.change(handle_audio_upload, [audio_in, txt], txt)
|
101 |
|
102 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from openai import OpenAI
|
4 |
+
import tempfile
|
5 |
+
import torch
|
6 |
+
import whisper
|
7 |
|
8 |
+
# Load API key from environment
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
10 |
|
11 |
+
# Initialize client for Groq-compatible OpenAI API
|
12 |
client = OpenAI(
|
13 |
api_key=GROQ_API_KEY,
|
14 |
base_url="https://api.groq.com/openai/v1"
|
15 |
)
|
16 |
|
17 |
+
# Load Whisper model
|
18 |
+
whisper_model = whisper.load_model("base")
|
19 |
+
|
20 |
+
# Chat history storage
|
21 |
+
chat_history = []
|
22 |
|
23 |
+
def chat_with_bot(message, history):
|
24 |
+
global chat_history
|
25 |
+
chat_history = history or []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Append user message to chat history
|
28 |
+
chat_history.append({"role": "user", "content": message})
|
29 |
+
|
30 |
+
# Call Groq LLM
|
31 |
response = client.chat.completions.create(
|
32 |
model="llama3-8b-8192",
|
33 |
+
messages=chat_history
|
|
|
34 |
)
|
35 |
+
|
36 |
reply = response.choices[0].message.content
|
|
|
37 |
|
38 |
+
# Append assistant reply to chat history
|
39 |
+
chat_history.append({"role": "assistant", "content": reply})
|
40 |
+
|
41 |
+
# Prepare output format for Gradio (list of tuples)
|
42 |
+
formatted_history = [(m['content'], chat_history[i+1]['content']) for i, m in enumerate(chat_history[:-1]) if m['role'] == 'user']
|
43 |
+
return formatted_history, chat_history
|
44 |
|
45 |
+
def transcribe_audio(audio_file):
|
46 |
+
if audio_file is None:
|
47 |
+
return ""
|
48 |
+
audio = whisper.load_audio(audio_file)
|
49 |
+
audio = whisper.pad_or_trim(audio)
|
50 |
+
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
51 |
+
options = whisper.DecodingOptions(fp16=torch.cuda.is_available())
|
52 |
+
result = whisper.decode(whisper_model, mel, options)
|
53 |
+
return result.text
|
54 |
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
gr.Markdown("# 🤖 Neobot - Chat with Voice, File & Text")
|
|
|
|
|
|
|
57 |
|
58 |
+
chatbot = gr.Chatbot()
|
59 |
+
state = gr.State([])
|
|
|
60 |
|
61 |
with gr.Row():
|
62 |
+
txt = gr.Textbox(placeholder="Type a message or upload audio/file...", show_label=False)
|
63 |
+
send_btn = gr.Button("Send")
|
64 |
|
65 |
with gr.Row():
|
66 |
+
audio_upload = gr.Audio(source="upload", type="filepath", label="Upload Audio")
|
67 |
+
transcribe_btn = gr.Button("Transcribe Audio")
|
68 |
|
69 |
+
# Chat event
|
70 |
+
send_btn.click(chat_with_bot, inputs=[txt, state], outputs=[chatbot, state])
|
71 |
|
72 |
+
# Audio transcription event
|
73 |
+
transcribe_btn.click(transcribe_audio, inputs=audio_upload, outputs=txt)
|
|
|
74 |
|
75 |
demo.launch()
|