Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,8 +6,54 @@ import pandas as pd
|
|
| 6 |
import xlsxwriter
|
| 7 |
from io import BytesIO
|
| 8 |
from collections import defaultdict
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def is_homo_repeat(s):
|
| 12 |
return all(c == s[0] for c in s)
|
| 13 |
|
|
@@ -84,14 +130,13 @@ def process_protein_sequence(sequence, analysis_type, overlap=50):
|
|
| 84 |
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
|
| 85 |
for k, v in fragment_repeats.items():
|
| 86 |
hetero_repeats[k] += v
|
| 87 |
-
hetero_repeats = check_boundary_repeats(fragments, hetero_repeats
|
| 88 |
-
new_repeats = find_new_boundary_repeats(fragments, hetero_repeats
|
| 89 |
for k, v in new_repeats.items():
|
| 90 |
hetero_repeats[k] += v
|
| 91 |
hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
|
| 92 |
|
| 93 |
homo_repeats = find_homorepeats(sequence)
|
| 94 |
-
|
| 95 |
final_repeats = homo_repeats.copy()
|
| 96 |
for k, v in hetero_repeats.items():
|
| 97 |
final_repeats[k] += v
|
|
@@ -140,7 +185,8 @@ def create_excel(sequences_data, repeats, filenames):
|
|
| 140 |
output.seek(0)
|
| 141 |
return output
|
| 142 |
|
| 143 |
-
|
|
|
|
| 144 |
analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
|
| 145 |
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
|
| 146 |
|
|
@@ -148,29 +194,43 @@ if uploaded_files:
|
|
| 148 |
all_repeats = set()
|
| 149 |
all_sequences_data = []
|
| 150 |
filenames = []
|
|
|
|
| 151 |
for file in uploaded_files:
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import xlsxwriter
|
| 7 |
from io import BytesIO
|
| 8 |
from collections import defaultdict
|
| 9 |
+
import hashlib
|
| 10 |
+
import sqlite3
|
| 11 |
+
import base64
|
| 12 |
+
|
| 13 |
+
# Initialize DB
|
| 14 |
+
def init_db():
|
| 15 |
+
conn = sqlite3.connect("file_cache.db")
|
| 16 |
+
cursor = conn.cursor()
|
| 17 |
+
cursor.execute('''
|
| 18 |
+
CREATE TABLE IF NOT EXISTS file_cache (
|
| 19 |
+
file_hash TEXT PRIMARY KEY,
|
| 20 |
+
file_name TEXT,
|
| 21 |
+
analysis_type TEXT,
|
| 22 |
+
result BLOB
|
| 23 |
+
)
|
| 24 |
+
''')
|
| 25 |
+
conn.commit()
|
| 26 |
+
conn.close()
|
| 27 |
+
|
| 28 |
+
init_db()
|
| 29 |
+
|
| 30 |
+
# Hashing function
|
| 31 |
+
def get_file_hash(file):
|
| 32 |
+
return hashlib.sha256(file.read()).hexdigest()
|
| 33 |
+
|
| 34 |
+
# Check if file hash exists in DB
|
| 35 |
+
def check_cache(file_hash, analysis_type):
|
| 36 |
+
conn = sqlite3.connect("file_cache.db")
|
| 37 |
+
cursor = conn.cursor()
|
| 38 |
+
cursor.execute("SELECT result FROM file_cache WHERE file_hash = ? AND analysis_type = ?", (file_hash, analysis_type))
|
| 39 |
+
row = cursor.fetchone()
|
| 40 |
+
conn.close()
|
| 41 |
+
if row:
|
| 42 |
+
return BytesIO(base64.b64decode(row[0]))
|
| 43 |
+
return None
|
| 44 |
+
|
| 45 |
+
# Store result in DB
|
| 46 |
+
def cache_result(file_hash, file_name, analysis_type, result_bytes):
|
| 47 |
+
conn = sqlite3.connect("file_cache.db")
|
| 48 |
+
cursor = conn.cursor()
|
| 49 |
+
cursor.execute(
|
| 50 |
+
"INSERT OR REPLACE INTO file_cache (file_hash, file_name, analysis_type, result) VALUES (?, ?, ?, ?)",
|
| 51 |
+
(file_hash, file_name, analysis_type, base64.b64encode(result_bytes.read()).decode('utf-8'))
|
| 52 |
+
)
|
| 53 |
+
conn.commit()
|
| 54 |
+
conn.close()
|
| 55 |
+
|
| 56 |
+
# === Protein Analysis Logic ===
|
| 57 |
def is_homo_repeat(s):
|
| 58 |
return all(c == s[0] for c in s)
|
| 59 |
|
|
|
|
| 130 |
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
|
| 131 |
for k, v in fragment_repeats.items():
|
| 132 |
hetero_repeats[k] += v
|
| 133 |
+
hetero_repeats = check_boundary_repeats(fragments, hetero_repeats)
|
| 134 |
+
new_repeats = find_new_boundary_repeats(fragments, hetero_repeats)
|
| 135 |
for k, v in new_repeats.items():
|
| 136 |
hetero_repeats[k] += v
|
| 137 |
hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
|
| 138 |
|
| 139 |
homo_repeats = find_homorepeats(sequence)
|
|
|
|
| 140 |
final_repeats = homo_repeats.copy()
|
| 141 |
for k, v in hetero_repeats.items():
|
| 142 |
final_repeats[k] += v
|
|
|
|
| 185 |
output.seek(0)
|
| 186 |
return output
|
| 187 |
|
| 188 |
+
# === Streamlit UI ===
|
| 189 |
+
st.title("Protein Repeat Analysis with Caching")
|
| 190 |
analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
|
| 191 |
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
|
| 192 |
|
|
|
|
| 194 |
all_repeats = set()
|
| 195 |
all_sequences_data = []
|
| 196 |
filenames = []
|
| 197 |
+
final_output = BytesIO()
|
| 198 |
for file in uploaded_files:
|
| 199 |
+
file.seek(0)
|
| 200 |
+
file_hash = get_file_hash(file)
|
| 201 |
+
file.seek(0)
|
| 202 |
+
cached = check_cache(file_hash, analysis_type)
|
| 203 |
+
if cached:
|
| 204 |
+
st.success(f"Using cached result for {file.name}")
|
| 205 |
+
cached_content = cached.read()
|
| 206 |
+
final_output.write(cached_content)
|
| 207 |
+
final_output.seek(0)
|
| 208 |
+
else:
|
| 209 |
+
st.info(f"Processing {file.name}...")
|
| 210 |
+
excel_data = pd.ExcelFile(file)
|
| 211 |
+
repeats, sequence_data = process_excel(excel_data, analysis_type)
|
| 212 |
+
if repeats is not None:
|
| 213 |
+
all_repeats.update(repeats)
|
| 214 |
+
all_sequences_data.append(sequence_data)
|
| 215 |
+
filenames.append(file.name)
|
| 216 |
+
excel_file = create_excel(all_sequences_data, all_repeats, filenames)
|
| 217 |
+
cache_result(file_hash, file.name, analysis_type, excel_file)
|
| 218 |
+
final_output = excel_file
|
| 219 |
+
|
| 220 |
+
st.download_button(
|
| 221 |
+
label="Download Excel file",
|
| 222 |
+
data=final_output,
|
| 223 |
+
file_name="protein_repeat_results.xlsx",
|
| 224 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
if st.checkbox("Show Results Table"):
|
| 228 |
+
rows = []
|
| 229 |
+
for file_index, file_data in enumerate(all_sequences_data):
|
| 230 |
+
filename = filenames[file_index]
|
| 231 |
+
for entry_id, protein_name, freq in file_data:
|
| 232 |
+
row = {"Filename": filename, "Entry ID": entry_id, "Protein Name": protein_name}
|
| 233 |
+
row.update({repeat: freq.get(repeat, 0) for repeat in sorted(all_repeats)})
|
| 234 |
+
rows.append(row)
|
| 235 |
+
result_df = pd.DataFrame(rows)
|
| 236 |
+
st.dataframe(result_df)
|