File size: 7,960 Bytes
03aaa04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b258e
 
03aaa04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b258e
 
03aaa04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b258e
03aaa04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b258e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
os.system("pip install streamlit pandas xlsxwriter openpyxl pymongo")

import streamlit as st
import pandas as pd
import xlsxwriter
from io import BytesIO
from collections import defaultdict
from pymongo import MongoClient
import hashlib

# MongoDB setup
client = MongoClient("mongodb+srv://dhruvmangroliya:[email protected]/BTP_DB?retryWrites=true&w=majority")
db = client['BTP_DB']
results_collection = db['protein_results']

# Utility
def is_homo_repeat(s):
    return all(c == s[0] for c in s)

def hash_sequence(sequence):
    return hashlib.md5(sequence.encode()).hexdigest()

@st.cache_data(show_spinner=False)
def fragment_protein_sequence(sequence, max_length=1000):
    return [sequence[i:i+max_length] for i in range(0, len(sequence), max_length)]

def find_homorepeats(protein):
    n = len(protein)
    freq = defaultdict(int)
    i = 0
    while i < n:
        curr = protein[i]
        repeat = ""
        while i < n and curr == protein[i]:
            repeat += protein[i]
            i += 1
        if len(repeat) > 1:
            freq[repeat] += 1
    return freq

def find_hetero_amino_acid_repeats(sequence):
    repeat_counts = defaultdict(int)
    for length in range(2, len(sequence) + 1):
        for i in range(len(sequence) - length + 1):
            substring = sequence[i:i+length]
            repeat_counts[substring] += 1
    return {k: v for k, v in repeat_counts.items() if v > 1}

def check_boundary_repeats(fragments, final_repeats, overlap=50):
    for i in range(len(fragments) - 1):
        left_overlap = fragments[i][-overlap:]
        right_overlap = fragments[i + 1][:overlap]
        overlap_region = left_overlap + right_overlap
        boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
        for substring, count in boundary_repeats.items():
            if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
                final_repeats[substring] += count
    return final_repeats

def find_new_boundary_repeats(fragments, final_repeats, overlap=50):
    new_repeats = defaultdict(int)
    for i in range(len(fragments) - 1):
        left_overlap = fragments[i][-overlap:]
        right_overlap = fragments[i + 1][:overlap]
        overlap_region = left_overlap + right_overlap
        boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
        for substring, count in boundary_repeats.items():
            if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
                if substring not in final_repeats:
                    new_repeats[substring] += count
    return new_repeats

def get_or_process_sequence(sequence, analysis_type, overlap=50):
    sequence_hash = hash_sequence(sequence)
    cached = results_collection.find_one({"_id": sequence_hash, "analysis_type": analysis_type})
    if cached:
        return cached["repeats"]

    fragments = fragment_protein_sequence(sequence)
    final_repeats = defaultdict(int)

    if analysis_type == "Hetero":
        for fragment in fragments:
            fragment_repeats = find_hetero_amino_acid_repeats(fragment)
            for k, v in fragment_repeats.items():
                final_repeats[k] += v
        final_repeats = check_boundary_repeats(fragments, final_repeats, overlap)
        new_repeats = find_new_boundary_repeats(fragments, final_repeats, overlap)
        for k, v in new_repeats.items():
            final_repeats[k] += v
        final_repeats = {k: v for k, v in final_repeats.items() if not is_homo_repeat(k)}

    elif analysis_type == "Homo":
        final_repeats = find_homorepeats(sequence)

    elif analysis_type == "Both":
        hetero_repeats = defaultdict(int)
        for fragment in fragments:
            fragment_repeats = find_hetero_amino_acid_repeats(fragment)
            for k, v in fragment_repeats.items():
                hetero_repeats[k] += v
        hetero_repeats = check_boundary_repeats(fragments, hetero_repeats, overlap)
        new_repeats = find_new_boundary_repeats(fragments, hetero_repeats, overlap)
        for k, v in new_repeats.items():
            hetero_repeats[k] += v
        hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}

        homo_repeats = find_homorepeats(sequence)
        final_repeats = homo_repeats.copy()
        for k, v in hetero_repeats.items():
            final_repeats[k] += v

    # Save to DB for caching
    results_collection.insert_one({
        "_id": sequence_hash,
        "analysis_type": analysis_type,
        "repeats": dict(final_repeats)
    })
    return final_repeats

def process_excel(excel_data, analysis_type):
    repeats = set()
    sequence_data = []
    for sheet_name in excel_data.sheet_names:
        df = excel_data.parse(sheet_name)
        if len(df.columns) < 3:
            st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence")
            return None, None
        for _, row in df.iterrows():
            entry_id = str(row[0])
            protein_name = str(row[1])
            sequence = str(row[2]).replace('"', '').replace(' ', '')
            freq = get_or_process_sequence(sequence, analysis_type)
            sequence_data.append((entry_id, protein_name, freq))
            repeats.update(freq.keys())
    return repeats, sequence_data

def create_excel(sequences_data, repeats, filenames):
    output = BytesIO()
    workbook = xlsxwriter.Workbook(output, {'in_memory': True})
    for file_index, file_data in enumerate(sequences_data):
        filename = filenames[file_index]
        worksheet = workbook.add_worksheet(filename[:31])
        worksheet.write(0, 0, "Entry")
        worksheet.write(0, 1, "Protein Name")
        col = 2
        for repeat in sorted(repeats):
            worksheet.write(0, col, repeat)
            col += 1
        row = 1
        for entry_id, protein_name, freq in file_data:
            worksheet.write(row, 0, entry_id)
            worksheet.write(row, 1, protein_name)
            col = 2
            for repeat in sorted(repeats):
                worksheet.write(row, col, freq.get(repeat, 0))
                col += 1
            row += 1
    workbook.close()
    output.seek(0)
    return output

# Streamlit UI
st.title("Protein Repeat Analysis with Caching")
analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])

if uploaded_files:
    all_repeats = set()
    all_sequences_data = []
    filenames = []
    for file in uploaded_files:
        excel_data = pd.ExcelFile(file)
        repeats, sequence_data = process_excel(excel_data, analysis_type)
        if repeats is not None:
            all_repeats.update(repeats)
            all_sequences_data.append(sequence_data)
            filenames.append(file.name)
    if all_sequences_data:
        st.success(f"Processed {len(uploaded_files)} files successfully!")
        excel_file = create_excel(all_sequences_data, all_repeats, filenames)
        st.download_button(
            label="Download Excel file",
            data=excel_file,
            file_name="protein_repeat_results.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )
        if st.checkbox("Show Results Table"):
            rows = []
            for file_index, file_data in enumerate(all_sequences_data):
                filename = filenames[file_index]
                for entry_id, protein_name, freq in file_data:
                    row = {"Filename": filename, "Entry": entry_id, "Protein Name": protein_name}
                    row.update({repeat: freq.get(repeat, 0) for repeat in sorted(all_repeats)})
                    rows.append(row)
            result_df = pd.DataFrame(rows)
            st.dataframe(result_df)