import os os.system("pip install streamlit pandas xlsxwriter openpyxl pymongo") import streamlit as st import pandas as pd import xlsxwriter from io import BytesIO from collections import defaultdict from pymongo import MongoClient import hashlib # MongoDB setup client = MongoClient("mongodb+srv://dhruvmangroliya:Eussmh5MbCBIkLJ6@cluster0.rrnbxfw.mongodb.net/BTP_DB?retryWrites=true&w=majority") db = client['BTP_DB'] results_collection = db['protein_results'] # Utility def is_homo_repeat(s): return all(c == s[0] for c in s) def hash_sequence(sequence): return hashlib.md5(sequence.encode()).hexdigest() @st.cache_data(show_spinner=False) def fragment_protein_sequence(sequence, max_length=1000): return [sequence[i:i+max_length] for i in range(0, len(sequence), max_length)] def find_homorepeats(protein): n = len(protein) freq = defaultdict(int) i = 0 while i < n: curr = protein[i] repeat = "" while i < n and curr == protein[i]: repeat += protein[i] i += 1 if len(repeat) > 1: freq[repeat] += 1 return freq def find_hetero_amino_acid_repeats(sequence): repeat_counts = defaultdict(int) for length in range(2, len(sequence) + 1): for i in range(len(sequence) - length + 1): substring = sequence[i:i+length] repeat_counts[substring] += 1 return {k: v for k, v in repeat_counts.items() if v > 1} def check_boundary_repeats(fragments, final_repeats, overlap=50): for i in range(len(fragments) - 1): left_overlap = fragments[i][-overlap:] right_overlap = fragments[i + 1][:overlap] overlap_region = left_overlap + right_overlap boundary_repeats = find_hetero_amino_acid_repeats(overlap_region) for substring, count in boundary_repeats.items(): if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring): final_repeats[substring] += count return final_repeats def find_new_boundary_repeats(fragments, final_repeats, overlap=50): new_repeats = defaultdict(int) for i in range(len(fragments) - 1): left_overlap = fragments[i][-overlap:] right_overlap = fragments[i + 1][:overlap] overlap_region = left_overlap + right_overlap boundary_repeats = find_hetero_amino_acid_repeats(overlap_region) for substring, count in boundary_repeats.items(): if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring): if substring not in final_repeats: new_repeats[substring] += count return new_repeats def get_or_process_sequence(sequence, analysis_type, overlap=50): sequence_hash = hash_sequence(sequence) cached = results_collection.find_one({"_id": sequence_hash, "analysis_type": analysis_type}) if cached: return cached["repeats"] fragments = fragment_protein_sequence(sequence) final_repeats = defaultdict(int) if analysis_type == "Hetero": for fragment in fragments: fragment_repeats = find_hetero_amino_acid_repeats(fragment) for k, v in fragment_repeats.items(): final_repeats[k] += v final_repeats = check_boundary_repeats(fragments, final_repeats, overlap) new_repeats = find_new_boundary_repeats(fragments, final_repeats, overlap) for k, v in new_repeats.items(): final_repeats[k] += v final_repeats = {k: v for k, v in final_repeats.items() if not is_homo_repeat(k)} elif analysis_type == "Homo": final_repeats = find_homorepeats(sequence) elif analysis_type == "Both": hetero_repeats = defaultdict(int) for fragment in fragments: fragment_repeats = find_hetero_amino_acid_repeats(fragment) for k, v in fragment_repeats.items(): hetero_repeats[k] += v hetero_repeats = check_boundary_repeats(fragments, hetero_repeats, overlap) new_repeats = find_new_boundary_repeats(fragments, hetero_repeats, overlap) for k, v in new_repeats.items(): hetero_repeats[k] += v hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)} homo_repeats = find_homorepeats(sequence) final_repeats = homo_repeats.copy() for k, v in hetero_repeats.items(): final_repeats[k] += v # Save to DB for caching results_collection.insert_one({ "_id": sequence_hash, "analysis_type": analysis_type, "repeats": dict(final_repeats) }) return final_repeats def process_excel(excel_data, analysis_type): repeats = set() sequence_data = [] for sheet_name in excel_data.sheet_names: df = excel_data.parse(sheet_name) if len(df.columns) < 3: st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence") return None, None for _, row in df.iterrows(): entry_id = str(row[0]) protein_name = str(row[1]) sequence = str(row[2]).replace('"', '').replace(' ', '') freq = get_or_process_sequence(sequence, analysis_type) sequence_data.append((entry_id, protein_name, freq)) repeats.update(freq.keys()) return repeats, sequence_data def create_excel(sequences_data, repeats, filenames): output = BytesIO() workbook = xlsxwriter.Workbook(output, {'in_memory': True}) for file_index, file_data in enumerate(sequences_data): filename = filenames[file_index] worksheet = workbook.add_worksheet(filename[:31]) worksheet.write(0, 0, "Entry") worksheet.write(0, 1, "Protein Name") col = 2 for repeat in sorted(repeats): worksheet.write(0, col, repeat) col += 1 row = 1 for entry_id, protein_name, freq in file_data: worksheet.write(row, 0, entry_id) worksheet.write(row, 1, protein_name) col = 2 for repeat in sorted(repeats): worksheet.write(row, col, freq.get(repeat, 0)) col += 1 row += 1 workbook.close() output.seek(0) return output # Streamlit UI st.title("Protein Repeat Analysis with Caching") analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2) uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"]) if uploaded_files: all_repeats = set() all_sequences_data = [] filenames = [] for file in uploaded_files: excel_data = pd.ExcelFile(file) repeats, sequence_data = process_excel(excel_data, analysis_type) if repeats is not None: all_repeats.update(repeats) all_sequences_data.append(sequence_data) filenames.append(file.name) if all_sequences_data: st.success(f"Processed {len(uploaded_files)} files successfully!") excel_file = create_excel(all_sequences_data, all_repeats, filenames) st.download_button( label="Download Excel file", data=excel_file, file_name="protein_repeat_results.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" ) if st.checkbox("Show Results Table"): rows = [] for file_index, file_data in enumerate(all_sequences_data): filename = filenames[file_index] for entry_id, protein_name, freq in file_data: row = {"Filename": filename, "Entry": entry_id, "Protein Name": protein_name} row.update({repeat: freq.get(repeat, 0) for repeat in sorted(all_repeats)}) rows.append(row) result_df = pd.DataFrame(rows) st.dataframe(result_df)