Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,18 +14,15 @@ uploaded_file2 = st.file_uploader("Upload Second Excel File", type=["xlsx"])
|
|
14 |
|
15 |
if uploaded_file1 and uploaded_file2:
|
16 |
try:
|
17 |
-
# Read files: header is in the first row (index 0)
|
18 |
df1 = pd.read_excel(uploaded_file1, header=0)
|
19 |
df2 = pd.read_excel(uploaded_file2, header=0)
|
20 |
|
21 |
-
# Ensure column names are strings
|
22 |
df1.columns = df1.columns.astype(str)
|
23 |
df2.columns = df2.columns.astype(str)
|
24 |
|
25 |
-
# Get ID and Name columns
|
26 |
id_col = df1.columns[0]
|
27 |
name_col = df1.columns[1]
|
28 |
-
repeat_columns = df1.columns[2:]
|
29 |
|
30 |
differences = []
|
31 |
|
@@ -43,34 +40,46 @@ if uploaded_file1 and uploaded_file2:
|
|
43 |
freq1 = row1[repeat_col]
|
44 |
freq2 = row2[repeat_col]
|
45 |
|
46 |
-
if pd.isna(freq1) or pd.isna(freq2):
|
47 |
continue
|
48 |
|
49 |
if freq1 != freq2:
|
50 |
diff = abs(freq1 - freq2)
|
|
|
51 |
differences.append({
|
52 |
id_col: entry_id,
|
53 |
name_col: protein_name,
|
54 |
"Repeat": repeat_col,
|
55 |
"Frequency File 1": freq1,
|
56 |
"Frequency File 2": freq2,
|
57 |
-
"Difference": diff
|
|
|
58 |
})
|
59 |
|
60 |
if differences:
|
61 |
result_df = pd.DataFrame(differences)
|
62 |
result_df = result_df.sort_values(by="Difference", ascending=False)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
output = BytesIO()
|
65 |
with pd.ExcelWriter(output, engine='openpyxl') as writer:
|
66 |
-
|
67 |
output.seek(0)
|
68 |
|
69 |
st.success("β
Comparison complete. Showing only changed repeats.")
|
70 |
st.download_button(
|
71 |
label="π₯ Download Excel",
|
72 |
data=output,
|
73 |
-
file_name="
|
74 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
75 |
)
|
76 |
else:
|
|
|
14 |
|
15 |
if uploaded_file1 and uploaded_file2:
|
16 |
try:
|
|
|
17 |
df1 = pd.read_excel(uploaded_file1, header=0)
|
18 |
df2 = pd.read_excel(uploaded_file2, header=0)
|
19 |
|
|
|
20 |
df1.columns = df1.columns.astype(str)
|
21 |
df2.columns = df2.columns.astype(str)
|
22 |
|
|
|
23 |
id_col = df1.columns[0]
|
24 |
name_col = df1.columns[1]
|
25 |
+
repeat_columns = df1.columns[2:]
|
26 |
|
27 |
differences = []
|
28 |
|
|
|
40 |
freq1 = row1[repeat_col]
|
41 |
freq2 = row2[repeat_col]
|
42 |
|
43 |
+
if pd.isna(freq1) or pd.isna(freq2) or freq1 == 0:
|
44 |
continue
|
45 |
|
46 |
if freq1 != freq2:
|
47 |
diff = abs(freq1 - freq2)
|
48 |
+
pct_change = ((freq2 - freq1) / freq1) * 100
|
49 |
differences.append({
|
50 |
id_col: entry_id,
|
51 |
name_col: protein_name,
|
52 |
"Repeat": repeat_col,
|
53 |
"Frequency File 1": freq1,
|
54 |
"Frequency File 2": freq2,
|
55 |
+
"Difference": diff,
|
56 |
+
"%age Change": pct_change
|
57 |
})
|
58 |
|
59 |
if differences:
|
60 |
result_df = pd.DataFrame(differences)
|
61 |
result_df = result_df.sort_values(by="Difference", ascending=False)
|
62 |
|
63 |
+
# Style for Excel (green for +, red for -)
|
64 |
+
def color_pct(val):
|
65 |
+
if val > 0:
|
66 |
+
return 'color: green'
|
67 |
+
elif val < 0:
|
68 |
+
return 'color: red'
|
69 |
+
return ''
|
70 |
+
|
71 |
+
styled_df = result_df.style.applymap(color_pct, subset=["%age Change"])
|
72 |
+
|
73 |
output = BytesIO()
|
74 |
with pd.ExcelWriter(output, engine='openpyxl') as writer:
|
75 |
+
styled_df.to_excel(writer, index=False, sheet_name="Changed Repeats")
|
76 |
output.seek(0)
|
77 |
|
78 |
st.success("β
Comparison complete. Showing only changed repeats.")
|
79 |
st.download_button(
|
80 |
label="π₯ Download Excel",
|
81 |
data=output,
|
82 |
+
file_name="changed_repeats_with_percentage.xlsx",
|
83 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
84 |
)
|
85 |
else:
|