File size: 11,887 Bytes
4675cde
 
3069101
 
 
 
 
 
 
 
 
 
4675cde
3069101
 
 
 
 
 
 
 
4675cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3069101
4675cde
 
 
 
 
 
 
 
 
 
 
 
 
 
3069101
4675cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3069101
 
4675cde
3069101
4675cde
 
 
 
3069101
4675cde
 
 
 
 
 
 
3069101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4675cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4271d24
 
4675cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3069101
4675cde
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# πŸ”„ COMBINED STREAMLIT PROTEIN ANALYSIS TOOL WITH COLORED COMPARISON

import os
os.system("pip install streamlit pandas xlsxwriter openpyxl pymongo")

import streamlit as st
import pandas as pd
import xlsxwriter
from io import BytesIO
from collections import defaultdict
import hashlib

# MongoDB Setup
try:
    from pymongo import MongoClient
    client = MongoClient("mongodb+srv://dhruvmangroliya:[email protected]/BTP_DB?retryWrites=true&w=majority")
    db = client['BTP_DB']
    results_collection = db['protein_results']
except:
    results_collection = None

# Utility Functions
def is_homo_repeat(s):
    return all(c == s[0] for c in s)

def hash_sequence(sequence):
    return hashlib.md5(sequence.encode()).hexdigest()

@st.cache_data(show_spinner=False)
def fragment_protein_sequence(sequence, max_length=1000):
    return [sequence[i:i+max_length] for i in range(0, len(sequence), max_length)]

def find_homorepeats(protein):
    n = len(protein)
    freq = defaultdict(int)
    i = 0
    while i < n:
        curr = protein[i]
        repeat = ""
        while i < n and curr == protein[i]:
            repeat += protein[i]
            i += 1
        if len(repeat) > 1:
            freq[repeat] += 1
    return freq

def find_hetero_amino_acid_repeats(sequence):
    repeat_counts = defaultdict(int)
    for length in range(2, len(sequence) + 1):
        for i in range(len(sequence) - length + 1):
            substring = sequence[i:i+length]
            repeat_counts[substring] += 1
    return {k: v for k, v in repeat_counts.items() if v > 1}

def check_boundary_repeats(fragments, final_repeats, overlap=50):
    for i in range(len(fragments) - 1):
        left_overlap = fragments[i][-overlap:]
        right_overlap = fragments[i + 1][:overlap]
        overlap_region = left_overlap + right_overlap
        boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
        for substring, count in boundary_repeats.items():
            if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
                final_repeats[substring] += count
    return final_repeats

def find_new_boundary_repeats(fragments, final_repeats, overlap=50):
    new_repeats = defaultdict(int)
    for i in range(len(fragments) - 1):
        left_overlap = fragments[i][-overlap:]
        right_overlap = fragments[i + 1][:overlap]
        overlap_region = left_overlap + right_overlap
        boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
        for substring, count in boundary_repeats.items():
            if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
                if substring not in final_repeats:
                    new_repeats[substring] += count
    return new_repeats

def get_or_process_sequence(sequence, analysis_type, overlap=50):
    if results_collection is None:
        return {}
    hash_input = f"{sequence}_{analysis_type}"
    sequence_hash = hash_sequence(hash_input)
    cached = results_collection.find_one({"_id": sequence_hash})
    if cached:
        return cached["repeats"]

    fragments = fragment_protein_sequence(sequence)
    final_repeats = defaultdict(int)

    if analysis_type == "Hetero":
        for fragment in fragments:
            fragment_repeats = find_hetero_amino_acid_repeats(fragment)
            for k, v in fragment_repeats.items():
                final_repeats[k] += v
        final_repeats = check_boundary_repeats(fragments, final_repeats, overlap)
        new_repeats = find_new_boundary_repeats(fragments, final_repeats, overlap)
        for k, v in new_repeats.items():
            final_repeats[k] += v
        final_repeats = {k: v for k, v in final_repeats.items() if not is_homo_repeat(k)}

    elif analysis_type == "Homo":
        final_repeats = find_homorepeats(sequence)

    elif analysis_type == "Both":
        hetero_repeats = defaultdict(int)
        for fragment in fragments:
            fragment_repeats = find_hetero_amino_acid_repeats(fragment)
            for k, v in fragment_repeats.items():
                hetero_repeats[k] += v
        hetero_repeats = check_boundary_repeats(fragments, hetero_repeats, overlap)
        new_repeats = find_new_boundary_repeats(fragments, hetero_repeats, overlap)
        for k, v in new_repeats.items():
            hetero_repeats[k] += v
        hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
        homo_repeats = find_homorepeats(sequence)
        final_repeats = homo_repeats.copy()
        for k, v in hetero_repeats.items():
            final_repeats[k] += v

    results_collection.insert_one({
        "_id": sequence_hash,
        "sequence": sequence,
        "analysis_type": analysis_type,
        "repeats": dict(final_repeats)
    })
    return final_repeats

def process_excel(excel_data, analysis_type):
    repeats = set()
    sequence_data = []
    count = 0
    for sheet_name in excel_data.sheet_names:
        df = excel_data.parse(sheet_name)
        if len(df.columns) < 3:
            st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence")
            return None, None
        for _, row in df.iterrows():
            entry_id = str(row[0])
            protein_name = str(row[1])
            sequence = str(row[2]).replace('"', '').replace(' ', '').strip()
            if not sequence:
                continue
            count += 1
            freq = get_or_process_sequence(sequence, analysis_type)
            sequence_data.append((entry_id, protein_name, freq))
            repeats.update(freq.keys())
    st.toast(f"{count} sequences processed.")
    return repeats, sequence_data

def create_excel(sequences_data, repeats, filenames):
    output = BytesIO()
    workbook = xlsxwriter.Workbook(output, {'in_memory': True})
    for file_index, file_data in enumerate(sequences_data):
        filename = filenames[file_index]
        worksheet = workbook.add_worksheet(filename[:31])
        worksheet.write(0, 0, "Entry")
        worksheet.write(0, 1, "Protein Name")
        col = 2
        for repeat in sorted(repeats):
            worksheet.write(0, col, repeat)
            col += 1
        row = 1
        for entry_id, protein_name, freq in file_data:
            worksheet.write(row, 0, entry_id)
            worksheet.write(row, 1, protein_name)
            col = 2
            for repeat in sorted(repeats):
                worksheet.write(row, col, freq.get(repeat, 0))
                col += 1
            row += 1
    workbook.close()
    output.seek(0)
    return output

# Streamlit UI
st.set_page_config(page_title="Protein Tool", layout="wide")
st.title("🧬 Protein Analysis Toolkit")

app_choice = st.radio("Choose an option", ["πŸ” Protein Repeat Finder", "πŸ“Š Protein Comparator"])

if app_choice == "πŸ” Protein Repeat Finder":
    analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
    uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])

    if 'all_sequences_data' not in st.session_state:
        st.session_state.all_sequences_data = []
        st.session_state.all_repeats = set()
        st.session_state.filenames = []
        st.session_state.excel_file = None

    if uploaded_files and st.button("Process Files"):
        st.session_state.all_repeats = set()
        st.session_state.all_sequences_data = []
        st.session_state.filenames = []
        for file in uploaded_files:
            excel_data = pd.ExcelFile(file)
            repeats, sequence_data = process_excel(excel_data, analysis_type)
            if repeats is not None:
                st.session_state.all_repeats.update(repeats)
                st.session_state.all_sequences_data.append(sequence_data)
                st.session_state.filenames.append(file.name)
        if st.session_state.all_sequences_data:
            st.toast(f"Processed {len(uploaded_files)} file(s) successfully.")
            st.session_state.excel_file = create_excel(
                st.session_state.all_sequences_data,
                st.session_state.all_repeats,
                st.session_state.filenames
            )

    if st.session_state.excel_file:
        st.download_button(
            label="Download Excel file",
            data=st.session_state.excel_file,
            file_name="protein_repeat_results.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )

    if st.checkbox("Show Results Table"):
        rows = []
        for file_index, file_data in enumerate(st.session_state.all_sequences_data):
            filename = st.session_state.filenames[file_index]
            for entry_id, protein_name, freq in file_data:
                row = {"Filename": filename, "Entry": entry_id, "Protein Name": protein_name}
                row.update({repeat: freq.get(repeat, 0) for repeat in sorted(st.session_state.all_repeats)})
                rows.append(row)
        result_df = pd.DataFrame(rows)
        st.dataframe(result_df)

elif app_choice == "πŸ“Š Protein Comparator":
    st.write("Upload two Excel files with protein data to compare repeat frequencies.")

    file1 = st.file_uploader("Upload First Excel File", type=["xlsx"], key="comp1")
    file2 = st.file_uploader("Upload Second Excel File", type=["xlsx"], key="comp2")

    if file1 and file2:
        df1 = pd.read_excel(file1)
        df2 = pd.read_excel(file2)

        df1.columns = df1.columns.astype(str)
        df2.columns = df2.columns.astype(str)

        id_col = df1.columns[0]
        name_col = df1.columns[1]
        repeat_columns = df1.columns[2:]

        diff_data = []
        for i in range(min(len(df1), len(df2))):
            row1 = df1.iloc[i]
            row2 = df2.iloc[i]
            diff_row = {"Entry": row1[id_col], "Protein Name": row1[name_col]}
            for repeat in repeat_columns:
                val1 = row1.get(repeat, 0)
                val2 = row2.get(repeat, 0)
                change = ((val2 - val1) / val1 * 100) if val1 != 0 else (100 if val2 > 0 else 0)
                diff_row[repeat] = change
            diff_data.append(diff_row)

        result_df = pd.DataFrame(diff_data)
        percent_cols = result_df.select_dtypes(include='number').columns
        st.dataframe(result_df.style.format({col: "{:.2f}%" for col in percent_cols}))

        def to_excel_with_colors(df):
            output = BytesIO()
            workbook = xlsxwriter.Workbook(output, {'in_memory': True})
            worksheet = workbook.add_worksheet('Comparison')

            green_format = workbook.add_format({'font_color': 'green'})
            red_format = workbook.add_format({'font_color': 'red'})
            header_format = workbook.add_format({'bold': True, 'bg_color': '#D7E4BC'})

            for col_num, col_name in enumerate(df.columns):
                worksheet.write(0, col_num, col_name, header_format)

            for row_num, row in enumerate(df.itertuples(index=False), start=1):
                for col_num, value in enumerate(row):
                    if col_num < 2:
                        worksheet.write(row_num, col_num, value)
                    else:
                        fmt = green_format if value > 0 else red_format if value < 0 else None
                        worksheet.write(row_num, col_num, f"{value:.2f}%", fmt)

            workbook.close()
            output.seek(0)
            return output

        excel_file = to_excel_with_colors(result_df)

        st.download_button(
            label="Download Colored Comparison Excel",
            data=excel_file,
            file_name="comparison_result_colored.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )