Update app.py
Browse files
app.py
CHANGED
@@ -227,56 +227,101 @@ if app_choice == "π Protein Repeat Finder":
|
|
227 |
result_df = pd.DataFrame(rows)
|
228 |
st.dataframe(result_df)
|
229 |
|
|
|
230 |
# ------------------- COMPARATOR FUNCTIONALITY -------------------
|
231 |
elif app_choice == "π Protein Comparator":
|
232 |
-
st.
|
233 |
-
|
234 |
-
|
235 |
-
file2 = st.file_uploader("Upload Second Excel File", type=["xlsx"], key="comp2")
|
236 |
-
|
237 |
-
if file1 and file2:
|
238 |
-
df1 = pd.read_excel(file1, header=0)
|
239 |
-
df2 = pd.read_excel(file2, header=0)
|
240 |
-
|
241 |
-
df1.columns = df1.columns.astype(str)
|
242 |
-
df2.columns = df2.columns.astype(str)
|
243 |
-
|
244 |
-
id_col = df1.columns[0]
|
245 |
-
name_col = df1.columns[1]
|
246 |
-
repeat_columns = df1.columns[2:]
|
247 |
-
|
248 |
-
differences = []
|
249 |
-
|
250 |
-
for i in range(len(df1)):
|
251 |
-
row1 = df1.iloc[i]
|
252 |
-
row2 = df2.iloc[i] if i < len(df2) else None
|
253 |
-
if row2 is not None:
|
254 |
-
diff_row = {
|
255 |
-
"Entry": row1[id_col],
|
256 |
-
"Protein Name": row1[name_col]
|
257 |
-
}
|
258 |
-
for repeat in repeat_columns:
|
259 |
-
val1 = row1.get(repeat, 0)
|
260 |
-
val2 = row2.get(repeat, 0)
|
261 |
-
diff_row[repeat] = abs(val1 - val2)
|
262 |
-
differences.append(diff_row)
|
263 |
-
|
264 |
-
result_df = pd.DataFrame(differences)
|
265 |
-
st.dataframe(result_df)
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
270 |
-
df.to_excel(writer, index=False, sheet_name='Comparison')
|
271 |
-
writer.close()
|
272 |
-
output.seek(0)
|
273 |
-
return output
|
274 |
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
st.download_button(
|
278 |
-
label="Download Comparison Excel",
|
279 |
-
data=excel_file,
|
280 |
-
file_name="comparison_result.xlsx",
|
281 |
-
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
282 |
-
)
|
|
|
227 |
result_df = pd.DataFrame(rows)
|
228 |
st.dataframe(result_df)
|
229 |
|
230 |
+
# ------------------- COMPARATOR FUNCTIONALITY -------------------
|
231 |
# ------------------- COMPARATOR FUNCTIONALITY -------------------
|
232 |
elif app_choice == "π Protein Comparator":
|
233 |
+
st.set_page_config(page_title="Protein Repeat Comparator", layout="centered")
|
234 |
+
st.title("𧬠Protein Repeat Comparator")
|
235 |
+
st.write("Upload two Excel files with protein data. Frequency values should start from the first row (header).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
+
uploaded_file1 = st.file_uploader("Upload First Excel File", type=["xlsx"], key="comp1")
|
238 |
+
uploaded_file2 = st.file_uploader("Upload Second Excel File", type=["xlsx"], key="comp2")
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
if uploaded_file1 and uploaded_file2:
|
241 |
+
try:
|
242 |
+
df1 = pd.read_excel(uploaded_file1, header=0)
|
243 |
+
df2 = pd.read_excel(uploaded_file2, header=0)
|
244 |
+
|
245 |
+
df1.columns = df1.columns.astype(str)
|
246 |
+
df2.columns = df2.columns.astype(str)
|
247 |
+
|
248 |
+
id_col = df1.columns[0]
|
249 |
+
name_col = df1.columns[1]
|
250 |
+
repeat_columns = df1.columns[2:]
|
251 |
+
|
252 |
+
differences = []
|
253 |
+
|
254 |
+
for _, row1 in df1.iterrows():
|
255 |
+
entry_id = row1[id_col]
|
256 |
+
protein_name = row1[name_col]
|
257 |
+
|
258 |
+
row2_match = df2[(df2[id_col] == entry_id) & (df2[name_col] == protein_name)]
|
259 |
+
if row2_match.empty:
|
260 |
+
continue
|
261 |
+
|
262 |
+
row2 = row2_match.iloc[0]
|
263 |
+
|
264 |
+
for repeat_col in repeat_columns:
|
265 |
+
freq1 = row1[repeat_col]
|
266 |
+
freq2 = row2[repeat_col]
|
267 |
+
|
268 |
+
if pd.isna(freq1) or pd.isna(freq2):
|
269 |
+
continue
|
270 |
+
|
271 |
+
if freq1 != freq2:
|
272 |
+
if freq1 == 0:
|
273 |
+
pct_change = "Infinity"
|
274 |
+
else:
|
275 |
+
pct_change = ((freq2 - freq1) / freq1) * 100
|
276 |
+
pct_change = round(pct_change, 2)
|
277 |
+
|
278 |
+
diff = abs(freq1 - freq2)
|
279 |
+
differences.append({
|
280 |
+
id_col: entry_id,
|
281 |
+
name_col: protein_name,
|
282 |
+
"Repeat": repeat_col,
|
283 |
+
"Frequency File 1": freq1,
|
284 |
+
"Frequency File 2": freq2,
|
285 |
+
"Difference": diff,
|
286 |
+
"%age Change": pct_change
|
287 |
+
})
|
288 |
+
|
289 |
+
if differences:
|
290 |
+
result_df = pd.DataFrame(differences)
|
291 |
+
result_df = result_df.sort_values(by="Difference", ascending=False)
|
292 |
+
|
293 |
+
# Show DataFrame in Streamlit app
|
294 |
+
st.subheader("π View Changed Repeats")
|
295 |
+
st.dataframe(result_df, use_container_width=True)
|
296 |
+
|
297 |
+
# Apply styling
|
298 |
+
def color_pct(val):
|
299 |
+
if isinstance(val, str) and val == "Infinity":
|
300 |
+
return 'color: green'
|
301 |
+
elif isinstance(val, (int, float)):
|
302 |
+
if val > 0:
|
303 |
+
return 'color: green'
|
304 |
+
elif val < 0:
|
305 |
+
return 'color: red'
|
306 |
+
return ''
|
307 |
+
|
308 |
+
styled_df = result_df.style.applymap(color_pct, subset=["%age Change"])
|
309 |
+
|
310 |
+
# Save styled output
|
311 |
+
output = BytesIO()
|
312 |
+
with pd.ExcelWriter(output, engine='openpyxl') as writer:
|
313 |
+
styled_df.to_excel(writer, index=False, sheet_name="Changed Repeats")
|
314 |
+
output.seek(0)
|
315 |
+
|
316 |
+
st.download_button(
|
317 |
+
label="π₯ Download Excel File",
|
318 |
+
data=output,
|
319 |
+
file_name="changed_repeats_with_percentage.xlsx",
|
320 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
st.info("No changes in repeat frequencies were found.")
|
324 |
+
|
325 |
+
except Exception as e:
|
326 |
+
st.error(f"β Error: {e}")
|
327 |
|
|
|
|
|
|
|
|
|
|
|
|