Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
import pickle
|
3 |
from tensorflow.keras.models import load_model
|
4 |
-
import
|
5 |
-
import string
|
6 |
-
|
7 |
-
import nltk
|
8 |
-
from nltk.stem.porter import PorterStemmer
|
9 |
-
from nltk.stem import WordNetLemmatizer
|
10 |
-
from nltk.tokenize import word_tokenize
|
11 |
-
|
12 |
-
from nltk.corpus import stopwords
|
13 |
-
nltk.download('stopwords')
|
14 |
-
stop_words = stopwords.words('english')
|
15 |
-
import html
|
16 |
-
import unicodedata
|
17 |
-
|
18 |
-
from tensorflow.keras.preprocessing.text import text_to_word_sequence
|
19 |
-
from tensorflow.keras.preprocessing.text import Tokenizer
|
20 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
21 |
-
from tensorflow.keras import models
|
22 |
-
from tensorflow.keras import layers
|
23 |
-
from tensorflow.keras import losses
|
24 |
-
from tensorflow.keras import metrics
|
25 |
-
from tensorflow.keras import optimizers
|
26 |
-
from tensorflow.keras.utils import plot_model
|
27 |
-
|
28 |
-
def remove_special_chars(text):
|
29 |
-
re1 = re.compile(r' +')
|
30 |
-
x1 = text.lower().replace('#39;', "'").replace('amp;', '&').replace('#146;', "'").replace(
|
31 |
-
'nbsp;', ' ').replace('#36;', '$').replace('\\n', "\n").replace('quot;', "'").replace(
|
32 |
-
'<br />', "\n").replace('\\"', '"').replace('<unk>', 'u_n').replace(' @.@ ', '.').replace(
|
33 |
-
' @-@ ', '-').replace('\\', ' \\ ')
|
34 |
-
return re1.sub(' ', html.unescape(x1))
|
35 |
-
|
36 |
-
def to_lowercase(text):
|
37 |
-
return text.lower()
|
38 |
-
|
39 |
-
def remove_punctuation(text):
|
40 |
-
"""Remove punctuation from list of tokenized words"""
|
41 |
-
translator = str.maketrans('', '', string.punctuation)
|
42 |
-
return text.translate(translator)
|
43 |
-
|
44 |
-
def replace_numbers(text):
|
45 |
-
"""Replace all interger occurrences in list of tokenized words with textual representation"""
|
46 |
-
return re.sub(r'\d+', '', text)
|
47 |
-
|
48 |
-
def remove_whitespaces(text):
|
49 |
-
return text.strip()
|
50 |
-
|
51 |
-
def remove_stopwords(words, stop_words):
|
52 |
-
return [word for word in words if word not in stop_words]
|
53 |
-
|
54 |
-
def stem_words(words):
|
55 |
-
"""Stem words in text"""
|
56 |
-
stemmer = PorterStemmer()
|
57 |
-
return [stemmer.stem(word) for word in words]
|
58 |
-
|
59 |
-
def lemmatize_words(words):
|
60 |
-
"""Lemmatize words in text"""
|
61 |
-
|
62 |
-
lemmatizer = WordNetLemmatizer()
|
63 |
-
return [lemmatizer.lemmatize(word) for word in words]
|
64 |
-
|
65 |
-
def lemmatize_verbs(words):
|
66 |
-
"""Lemmatize verbs in text"""
|
67 |
-
|
68 |
-
lemmatizer = WordNetLemmatizer()
|
69 |
-
return ' '.join([lemmatizer.lemmatize(word, pos='v') for word in words])
|
70 |
-
|
71 |
-
def text2words(text):
|
72 |
-
return word_tokenize(text)
|
73 |
-
|
74 |
-
def clean_text( text):
|
75 |
-
text = remove_special_chars(text)
|
76 |
-
text = remove_punctuation(text)
|
77 |
-
text = to_lowercase(text)
|
78 |
-
text = replace_numbers(text)
|
79 |
-
words = text2words(text)
|
80 |
-
words = remove_stopwords(words, stop_words)
|
81 |
-
#words = stem_words(words)# Either stem ovocar lemmatize
|
82 |
-
words = lemmatize_words(words)
|
83 |
-
words = lemmatize_verbs(words)
|
84 |
-
|
85 |
-
return ''.join(words)
|
86 |
-
|
87 |
|
88 |
model = load_model('tox_model.h5')
|
|
|
89 |
text = st.text_area('Enter some text')
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
test = pad_sequences(comment_input,
|
96 |
maxlen=50,
|
97 |
truncating='post',
|
98 |
padding='post'
|
|
|
1 |
import streamlit as st
|
2 |
import pickle
|
3 |
from tensorflow.keras.models import load_model
|
4 |
+
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
model = load_model('tox_model.h5')
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained('model')
|
9 |
text = st.text_area('Enter some text')
|
10 |
|
11 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
12 |
+
|
13 |
+
|
14 |
+
test = pad_sequences(input_ids,
|
|
|
15 |
maxlen=50,
|
16 |
truncating='post',
|
17 |
padding='post'
|