JeCabrera's picture
Update app.py
c206df9 verified
from dotenv import load_dotenv
import streamlit as st
import os
import google.generativeai as genai
import time
import datetime
import random # Add this import
from ads_formulas import ads_formulas # Import the ads formulas
from style import styles
from prompts import create_fb_ad_instruction
from emotional_angles import emotional_angles
from copywriter_personas import copywriter_personas
from ad_objectives import ad_objectives # Import ad objectives
import PyPDF2
import docx
from PIL import Image
import io
from headline_generator import generate_random_headlines, generate_headlines_with_model, headline_formulas # Import headline_formulas too
# Cargar las variables de entorno
load_dotenv()
# Configurar la API de Google
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Funci贸n para generar modelo
@st.cache_resource
def get_model(temperature):
generation_config = {
"temperature": temperature,
}
return genai.GenerativeModel('gemini-2.0-flash', generation_config=generation_config)
# Function to generate headlines and select one randomly
def generate_and_select_headline(target_audience, product, temperature, selected_angle, file_content="", image_parts=None):
# Get the model
model = get_model(temperature)
# Select a random formula for the headline
formula_name = random.choice(list(headline_formulas.keys()))
selected_formula = headline_formulas[formula_name]
# Create instruction with file content if available
headline_instruction = f"Generate 3 compelling headlines for {product} targeting {target_audience}. Use this formula: {selected_formula}. Apply this emotional angle: {selected_angle}."
# Add file content as context if available
if file_content:
headline_instruction += f"\n\nUse the following information as additional context:\n{file_content[:5000]}"
# Generate headlines with or without image
if image_parts:
# If we have an image, use it for headline generation
response = model.generate_content([headline_instruction, image_parts], generation_config={"temperature": temperature})
headlines = response.parts[0].text if response and response.parts else ""
else:
# Generate 3 headlines using text only
headlines = generate_headlines_with_model(
model=model,
target_audience=target_audience,
product=product,
selected_formula=selected_formula,
selected_angle=selected_angle,
number_of_headlines=3
)
# Parse the headlines (assuming they come in a numbered format)
headline_list = []
for line in headlines.strip().split('\n'):
if line.strip() and line[0].isdigit() and '.' in line:
# Extract the headline text after the number and period
headline_text = line.split('.', 1)[1].strip()
headline_list.append(headline_text)
# If we couldn't parse any headlines, return a default one
if not headline_list:
return f"Descubre c贸mo {product} puede transformar tu vida como {target_audience}"
# Select a random headline from the generated ones
selected_headline = random.choice(headline_list)
return selected_headline
# Move the clean_ad_text function up with other utility functions
# After the generate_headline function and before generate_fb_ad
def generate_headline(target_audience=None, product=None, temperature=1.0, angle=None):
# Check if UI variables exist, otherwise use parameters
try:
target_audience = target_audience or ad_target_audience
product = product or ad_product
temperature = temperature or ad_temperature
angle = angle or emotional_angle_key
except NameError:
# If UI variables don't exist yet, use the provided parameters
pass
# Obtener el modelo usando la funci贸n existente
model = get_model(temperature)
# Remove duplicate imports and use the ones at the top of the file
formula_name = random.choice(list(headline_formulas.keys()))
selected_formula = headline_formulas[formula_name]
# Generar el titular usando el modelo ya inicializado
headline = generate_headlines_with_model(
model=model,
target_audience=target_audience,
product=product,
selected_formula=selected_formula,
selected_angle=angle
)
return headline
# Function to clean generated ad text
def clean_ad_text(text):
"""
Cleans the generated ad text by removing unwanted characters and formatting issues.
Args:
text (str): The raw generated ad text
Returns:
str: Cleaned ad text
"""
if not isinstance(text, str):
return ""
# Split text into lines
lines = text.split('\n')
# Clean lines
cleaned_lines = []
for line in lines:
# Skip lines that are just a single letter
if len(line.strip()) == 1 and line.strip().isalpha():
continue
# Remove triple backticks and language indicators (like ```text)
if line.strip().startswith('```'):
line = line.replace('```', '').strip()
# If line now only contains a language indicator, skip it
if line.strip() in ['text', 'markdown', 'md', 'html']:
continue
# Remove any other markdown artifacts
line = line.replace('```', '')
cleaned_lines.append(line)
# Join lines back together
cleaned_text = '\n'.join(cleaned_lines)
# Remove any consecutive newlines (more than 2)
import re
cleaned_text = re.sub(r'\n{3,}', '\n\n', cleaned_text)
return cleaned_text.strip()
# Modify the generate_fb_ad function to accept a headline parameter
def generate_fb_ad(target_audience, product, temperature, selected_formula, selected_angle,
selected_persona, story_prompt="", ad_objective=None, file_content="",
image_parts=None, max_file_chars=50000, headline=None):
if not target_audience or not product:
return "Por favor, completa todos los campos requeridos."
# Generate a headline if none is provided
if not headline:
headline = generate_and_select_headline(target_audience, product, temperature, selected_angle)
# Enfatizar el tema de la historia si se proporciona
emphasized_story_prompt = story_prompt
if story_prompt and story_prompt.strip():
emphasized_story_prompt = story_prompt.strip()
model = get_model(temperature)
# Crear la instrucci贸n base, ahora incluyendo el titular
ad_instruction = create_fb_ad_instruction(
target_audience,
product,
selected_formula,
selected_angle,
selected_persona,
ad_objective,
language="espa帽ol",
story_prompt=emphasized_story_prompt,
headline=headline # Pass the headline to the instruction creator
)
# Si hay contenido de archivo, a帽adirlo a la instrucci贸n
if file_content:
ad_instruction += f"\n\nAdem谩s, utiliza la siguiente informaci贸n como referencia para crear el anuncio:\n\n{file_content[:max_file_chars]}"
# Si hay un tema espec铆fico, ajustar la temperatura para mayor coherencia
effective_temperature = temperature
if story_prompt and story_prompt.strip():
effective_temperature = max(0.1, temperature * 0.9)
# Generar el contenido con o sin imagen
if image_parts:
response = model.generate_content([ad_instruction, image_parts], generation_config={"temperature": effective_temperature})
else:
response = model.generate_content([ad_instruction], generation_config={"temperature": effective_temperature})
return response.parts[0].text if response and response.parts else "Error generating content."
# Configurar la interfaz de usuario con Streamlit
st.set_page_config(page_title="CopyLegend AI", layout="wide")
# Ocultar el men煤 de tres puntos de Streamlit
hide_menu_style = """
<style>
#MainMenu {visibility: hidden;}
header {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_menu_style, unsafe_allow_html=True)
# Leer el contenido del archivo manual.md
with open("manual.md", "r", encoding="utf-8") as file:
manual_content = file.read()
# Mostrar el contenido del manual en el sidebar
st.sidebar.markdown(manual_content)
# Ocultar elementos de la interfaz
st.markdown(styles["main_layout"], unsafe_allow_html=True)
# Centrar el t铆tulo y el subt铆tulo con el nuevo texto
st.markdown("<h1 style='text-align: center;'>CopyLegend AI</h1>", unsafe_allow_html=True)
st.markdown("<h4 style='text-align: center;'>La 煤nica herramienta que combina la sabidur铆a de los maestros del copywriting con la precisi贸n de la inteligencia artificial</h4>", unsafe_allow_html=True)
# A帽adir CSS personalizado para el bot贸n
st.markdown(styles["button"], unsafe_allow_html=True)
# Crear columnas
col1, col2 = st.columns([1, 2])
# Columnas de entrada
with col1:
ad_target_audience = st.text_input("驴Qui茅n es tu p煤blico objetivo?", placeholder="Ejemplo: Madres trabajadoras de 30-45 a帽os")
ad_product = st.text_input("驴Qu茅 producto tienes en mente?", placeholder="Ejemplo: Curso de gesti贸n del tiempo")
input_prompt = st.text_area("Escribe de qu茅 quieres que trate la historia:", placeholder="Escribe aqu铆 tu idea...")
# A帽adir cargador de archivos
uploaded_file = st.file_uploader("馃搫 Archivo o imagen de referencia",
type=['txt', 'pdf', 'docx', 'jpg', 'jpeg', 'png'])
file_content = ""
is_image = False
image_parts = None
if uploaded_file is not None:
file_type = uploaded_file.name.split('.')[-1].lower()
# Manejar archivos de texto
if file_type in ['txt', 'pdf', 'docx']:
if file_type == 'txt':
try:
file_content = uploaded_file.read().decode('utf-8')
except Exception as e:
st.error(f"Error al leer el archivo TXT: {str(e)}")
file_content = ""
elif file_type == 'pdf':
try:
pdf_reader = PyPDF2.PdfReader(uploaded_file)
file_content = ""
for page in pdf_reader.pages:
file_content += page.extract_text() + "\n"
except Exception as e:
st.error(f"Error al leer el archivo PDF: {str(e)}")
file_content = ""
elif file_type == 'docx':
try:
doc = docx.Document(uploaded_file)
file_content = "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
st.error(f"Error al leer el archivo DOCX: {str(e)}")
file_content = ""
# Manejar archivos de imagen
elif file_type in ['jpg', 'jpeg', 'png']:
try:
image = Image.open(uploaded_file)
image_bytes = uploaded_file.getvalue()
image_parts = [
{
"mime_type": uploaded_file.type,
"data": image_bytes
}
]
is_image = True
except Exception as e:
st.error(f"Error al procesar la imagen: {str(e)}")
is_image = False
# Mover el bot贸n aqu铆, despu茅s del cargador de archivos
submit_ad = st.button("GENERAR ANUNCIO")
with st.expander("Opciones avanzadas"):
# Selector de f贸rmula de anuncio
ad_formula_key = st.selectbox(
"F贸rmula de anuncio",
options=list(ads_formulas.keys()),
label_visibility="visible"
)
ad_formula = ads_formulas[ad_formula_key]
# Selector de 谩ngulo emocional
emotional_angle_key = st.selectbox(
"脕ngulo emocional",
options=list(emotional_angles.keys()),
label_visibility="visible"
)
emotional_angle = emotional_angles[emotional_angle_key]
# Selector de personalidad de copywriter
ad_persona_key = st.selectbox(
"Estilo de copywriter",
options=list(copywriter_personas.keys()),
index=0,
format_func=lambda x: x.replace("_", " "),
label_visibility="visible"
)
ad_persona = copywriter_personas[ad_persona_key]
# Selector de objetivo de anuncio
ad_objective_key = st.selectbox(
"Objetivo de la campa帽a",
options=list(ad_objectives.keys()),
label_visibility="visible"
)
selected_objective = ad_objectives[ad_objective_key] if ad_objective_key != "ninguno" else None
ad_temperature = st.slider(
"Nivel de creatividad",
min_value=0.0,
max_value=1.5, # Reduced from 2.0 to 1.5 for better policy compliance
value=1.0,
step=0.1,
label_visibility="visible"
)
# Add disclaimer about content review
st.markdown("""
<div style='font-size: 0.8em; color: #888;'>
Nota: Todo contenido generado debe ser revisado para asegurar cumplimiento con las pol铆ticas de Facebook antes de publicar.
</div>
""", unsafe_allow_html=True)
# Mostrar el anuncio generado
if submit_ad:
# Check for different valid input combinations
has_file_content = file_content.strip() != "" or is_image
has_basic_fields = ad_target_audience and ad_product
# Generate ad if either file is uploaded OR basic fields are filled
if has_file_content or has_basic_fields:
# Mostrar el spinner en la segunda columna
with col2:
with st.spinner('Generando anuncio...'):
# Use default values if fields are empty
target_audience = ad_target_audience if ad_target_audience else "usuarios interesados"
product = ad_product if ad_product else "este producto/servicio"
story = input_prompt if input_prompt else ""
# Generate a headline first, now passing file_content and image_parts
headline = generate_and_select_headline(
target_audience,
product,
ad_temperature,
emotional_angle,
file_content, # Pass file content to headline generation
image_parts if is_image else None # Pass image data if available
)
# Generate the ad with the headline
generated_ad = generate_fb_ad(
target_audience,
product,
ad_temperature,
ad_formula,
emotional_angle,
ad_persona,
story,
selected_objective,
file_content,
image_parts if is_image else None,
50000,
headline
)
if not isinstance(generated_ad, str):
st.error("Error al generar el anuncio")
else:
# Clean the generated ad text
cleaned_ad = clean_ad_text(generated_ad)
# Display only the ad without separate headline and without storing in session state
st.markdown(f"""
<div style="{styles['results_container']}">
<h3>Anuncio Generado:</h3>
<p>{cleaned_ad}</p>
</div>
""", unsafe_allow_html=True)
# Aplicar estilo para el bot贸n de descarga
st.markdown(styles["download_button"], unsafe_allow_html=True)
# Get current timestamp for the filename
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Prepare content for download (without separate headline)
download_content = f"{cleaned_ad}"
# Bot贸n de descarga with timestamp in filename
st.download_button(
label="DESCARGAR ANUNCIO",
data=download_content,
file_name=f"anuncio_facebook_{timestamp}.txt",
mime="text/plain"
)
else:
col2.warning("Por favor, sube un archivo o completa al menos uno de los campos principales.")
# Remove the section that displays cached ads
# Agregar firma del autor al final de la p谩gina
st.markdown('---')
st.markdown('Made with 鉂わ笍 by Jes煤s Cabrera')