Spaces:
Sleeping
Sleeping
| # Definir las variables TITLE y SUBTITLE | |
| TITLE = "Generative AI Chatbot" # Aquí pones tu título | |
| SUBTITLE = "Interactúa con nuestro modelo de AI para generar respuestas creativas" # Aquí pones tu subtítulo | |
| import os | |
| import time | |
| import uuid | |
| from typing import List, Tuple, Optional, Dict, Union | |
| import google.generativeai as genai | |
| import gradio as gr | |
| from PIL import Image | |
| from dotenv import load_dotenv | |
| from langdetect import detect # Agregar para la detección del idioma | |
| # Cargar las variables de entorno desde el archivo .env | |
| load_dotenv() | |
| print("google-generativeai:", genai.__version__) | |
| # Obtener la clave de la API de las variables de entorno | |
| GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
| # Verificar que la clave de la API esté configurada | |
| if not GOOGLE_API_KEY: | |
| raise ValueError("GOOGLE_API_KEY is not set in environment variables.") | |
| IMAGE_CACHE_DIRECTORY = "/tmp" | |
| IMAGE_WIDTH = 512 | |
| CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]] | |
| def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: | |
| return [sequence.strip() for sequence in stop_sequences.split(",")] if stop_sequences else None | |
| def preprocess_image(image: Image.Image) -> Optional[Image.Image]: | |
| if image: | |
| image_height = int(image.height * IMAGE_WIDTH / image.width) | |
| return image.resize((IMAGE_WIDTH, image_height)) | |
| def cache_pil_image(image: Image.Image) -> str: | |
| image_filename = f"{uuid.uuid4()}.jpeg" | |
| os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True) | |
| image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename) | |
| image.save(image_path, "JPEG") | |
| return image_path | |
| def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY: | |
| for file in files: | |
| image = Image.open(file).convert('RGB') | |
| image_preview = preprocess_image(image) | |
| if image_preview: | |
| # Display a preview of the uploaded image | |
| gr.Image(image_preview).render() | |
| image_path = cache_pil_image(image) | |
| chatbot.append(((image_path,), None)) | |
| return chatbot | |
| def user(text_prompt: str, chatbot: CHAT_HISTORY): | |
| if text_prompt: | |
| chatbot.append((text_prompt, None)) | |
| return "", chatbot | |
| def bot( | |
| files: Optional[List[str]], | |
| temperature: float, | |
| max_output_tokens: int, | |
| stop_sequences: str, | |
| top_k: int, | |
| top_p: float, | |
| chatbot: CHAT_HISTORY | |
| ): | |
| if not GOOGLE_API_KEY: | |
| raise ValueError("GOOGLE_API_KEY is not set.") | |
| # Configurar la API con la clave | |
| genai.configure(api_key=GOOGLE_API_KEY) | |
| # Detectar el idioma del texto ingresado | |
| text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else [] | |
| detected_language = detect(text_prompt[-1]) if text_prompt else 'en' # Detectar el idioma del texto | |
| generation_config = genai.types.GenerationConfig( | |
| temperature=temperature, | |
| max_output_tokens=max_output_tokens, | |
| stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences), | |
| top_k=top_k, | |
| top_p=top_p | |
| ) | |
| # Crear el modelo con el idioma detectado | |
| model_name = 'gemini-1.5-flash' | |
| model = genai.GenerativeModel(model_name) | |
| response = model.generate_content(text_prompt + [], stream=True, generation_config=generation_config, language=detected_language) | |
| chatbot[-1][1] = "" | |
| for chunk in response: | |
| for i in range(0, len(chunk.text), 10): | |
| section = chunk.text[i:i + 10] | |
| chatbot[-1][1] += section | |
| time.sleep(0.01) | |
| yield chatbot | |
| chatbot_component = gr.Chatbot( | |
| label='Gemini', | |
| bubble_full_width=False, | |
| scale=2, | |
| height=300 | |
| ) | |
| text_prompt_component = gr.Textbox( | |
| placeholder="Message...", show_label=False, autofocus=True, scale=8 | |
| ) | |
| upload_button_component = gr.UploadButton( | |
| label="Upload Images", file_count="multiple", file_types=["image"], scale=1 | |
| ) | |
| run_button_component = gr.Button(value="Run", variant="primary", scale=1) | |
| temperature_component = gr.Slider( | |
| minimum=0, | |
| maximum=1.0, | |
| value=0.4, | |
| step=0.05, | |
| label="Temperature", | |
| ) | |
| max_output_tokens_component = gr.Slider( | |
| minimum=1, | |
| maximum=2048, | |
| value=1024, | |
| step=1, | |
| label="Token limit", | |
| ) | |
| stop_sequences_component = gr.Textbox( | |
| label="Add stop sequence", | |
| value="", | |
| type="text", | |
| placeholder="STOP, END", | |
| ) | |
| top_k_component = gr.Slider( | |
| minimum=1, | |
| maximum=40, | |
| value=32, | |
| step=1, | |
| label="Top-K", | |
| ) | |
| top_p_component = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| value=1, | |
| step=0.01, | |
| label="Top-P", | |
| ) | |
| user_inputs = [ | |
| text_prompt_component, | |
| chatbot_component | |
| ] | |
| bot_inputs = [ | |
| upload_button_component, | |
| temperature_component, | |
| max_output_tokens_component, | |
| stop_sequences_component, | |
| top_k_component, | |
| top_p_component, | |
| chatbot_component | |
| ] | |
| with gr.Blocks() as demo: | |
| gr.HTML(TITLE) # Ahora TITLE está definido | |
| gr.HTML(SUBTITLE) # Ahora SUBTITLE está definido | |
| with gr.Column(): | |
| chatbot_component.render() | |
| with gr.Row(): | |
| text_prompt_component.render() | |
| upload_button_component.render() | |
| run_button_component.render() | |
| with gr.Accordion("Parameters", open=False): | |
| temperature_component.render() | |
| max_output_tokens_component.render() | |
| stop_sequences_component.render() | |
| with gr.Accordion("Advanced", open=False): | |
| top_k_component.render() | |
| top_p_component.render() | |
| run_button_component.click( | |
| fn=user, | |
| inputs=user_inputs, | |
| outputs=[text_prompt_component, chatbot_component], | |
| queue=False | |
| ).then( | |
| fn=bot, inputs=bot_inputs, outputs=[chatbot_component], | |
| ) | |
| text_prompt_component.submit( | |
| fn=user, | |
| inputs=user_inputs, | |
| outputs=[text_prompt_component, chatbot_component], | |
| queue=False | |
| ).then( | |
| fn=bot, inputs=bot_inputs, outputs=[chatbot_component], | |
| ) | |
| upload_button_component.upload( | |
| fn=upload, | |
| inputs=[upload_button_component, chatbot_component], | |
| outputs=[chatbot_component], | |
| queue=False | |
| ) | |
| demo.queue(max_size=99).launch(debug=False, show_error=True) | |