Spaces:
Sleeping
Sleeping
File size: 5,669 Bytes
6a671c6 500f371 bc54a0a 5ef5e82 63666ab bc54a0a 5ef5e82 0f5b4d0 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 63666ab bc54a0a 63666ab 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 bc54a0a 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 63666ab 5ef5e82 c8fa5c6 5ef5e82 63666ab 5ef5e82 a3258ba 5ef5e82 bc54a0a 5ef5e82 8607e04 5ef5e82 a3258ba 63666ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
import os
import time
import uuid
from typing import List, Tuple, Optional, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
"""Redimensiona la imagen para que se ajuste a la aplicación."""
if image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
"""Guarda la imagen procesada en el sistema de archivos temporal."""
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
"""Sube los archivos y los agrega al historial de chat."""
for file in files:
if file.name.endswith(('.jpg', '.jpeg', '.png')):
image = Image.open(file).convert('RGB')
image_preview = preprocess_image(image)
if image_preview:
# Muestra una vista previa de la imagen subida
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
else:
# Si es un PDF u otro tipo de archivo, solo se guarda la ruta
chatbot.append(((file.name,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
"""Procesa la entrada del usuario y la agrega al historial."""
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
files: Optional[List[str]],
model_choice: str,
chatbot: CHAT_HISTORY
):
"""Genera una respuesta utilizando la API de Gemini."""
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set.")
# Configurar la API con la clave
genai.configure(api_key=GOOGLE_API_KEY)
generation_config = genai.types.GenerationConfig(
temperature=0.7,
max_output_tokens=8192,
top_k=10,
top_p=0.9
)
# Procesar los archivos
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files if file.name.endswith(('.jpg', '.jpeg', '.png'))] if files else []
pdf_prompt = [file.name for file in files if file.name.endswith('.pdf')] if files else []
# Crear el modelo
model = genai.GenerativeModel(model_choice)
response = model.generate_content(text_prompt + image_prompt + pdf_prompt, stream=True, generation_config=generation_config)
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
# Componentes de la interfaz de usuario con Gradio
chatbot_component = gr.Chatbot(
label='Gemini',
bubble_full_width=False,
scale=2,
height=300
)
text_prompt_component = gr.Textbox(
placeholder="Message...", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
label="Upload Files", file_count="multiple", file_types=["image", "pdf"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
value="gemini-1.5-flash",
label="Select Model",
scale=2
)
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
upload_button_component,
model_choice_component,
chatbot_component
]
with gr.Blocks() as demo:
gr.HTML("<h1 align='center'>Gemini Playground ✨</h1>")
gr.HTML("<h2 align='center'>Play with Gemini Pro and Gemini Pro Vision</h2>")
with gr.Column():
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
model_choice_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
demo.queue(max_size=99).launch(debug=False, show_error=True)
|