File size: 5,669 Bytes
6a671c6
 
 
500f371
bc54a0a
5ef5e82
 
63666ab
bc54a0a
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5b4d0
5ef5e82
63666ab
5ef5e82
 
 
 
 
63666ab
5ef5e82
 
 
 
 
 
 
63666ab
bc54a0a
63666ab
 
5ef5e82
 
63666ab
5ef5e82
 
 
 
63666ab
 
5ef5e82
 
 
63666ab
5ef5e82
 
 
bc54a0a
5ef5e82
 
 
 
 
63666ab
5ef5e82
 
63666ab
5ef5e82
 
 
63666ab
 
 
 
5ef5e82
 
63666ab
5ef5e82
63666ab
 
 
 
5ef5e82
63666ab
5ef5e82
 
 
 
 
 
 
 
 
63666ab
5ef5e82
 
 
 
 
 
 
 
c8fa5c6
5ef5e82
63666ab
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3258ba
 
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc54a0a
5ef5e82
 
 
 
 
 
8607e04
5ef5e82
a3258ba
63666ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""

import os
import time
import uuid
from typing import List, Tuple, Optional, Union

import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

print("google-generativeai:", genai.__version__)

# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]

def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    """Redimensiona la imagen para que se ajuste a la aplicación."""
    if image:
        image_height = int(image.height * IMAGE_WIDTH / image.width)
        return image.resize((IMAGE_WIDTH, image_height))

def cache_pil_image(image: Image.Image) -> str:
    """Guarda la imagen procesada en el sistema de archivos temporal."""
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path

def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    """Sube los archivos y los agrega al historial de chat."""
    for file in files:
        if file.name.endswith(('.jpg', '.jpeg', '.png')):
            image = Image.open(file).convert('RGB')
            image_preview = preprocess_image(image)
            if image_preview:
                # Muestra una vista previa de la imagen subida
                gr.Image(image_preview).render()
            image_path = cache_pil_image(image)
            chatbot.append(((image_path,), None))
        else:
            # Si es un PDF u otro tipo de archivo, solo se guarda la ruta
            chatbot.append(((file.name,), None))
    return chatbot

def user(text_prompt: str, chatbot: CHAT_HISTORY):
    """Procesa la entrada del usuario y la agrega al historial."""
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

def bot(
    files: Optional[List[str]],
    model_choice: str,
    chatbot: CHAT_HISTORY
):
    """Genera una respuesta utilizando la API de Gemini."""
    if not GOOGLE_API_KEY:
        raise ValueError("GOOGLE_API_KEY is not set.")
    
    # Configurar la API con la clave
    genai.configure(api_key=GOOGLE_API_KEY)
    generation_config = genai.types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=8192,
        top_k=10,
        top_p=0.9
    )

    # Procesar los archivos
    text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
    image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files if file.name.endswith(('.jpg', '.jpeg', '.png'))] if files else []
    pdf_prompt = [file.name for file in files if file.name.endswith('.pdf')] if files else []
    
    # Crear el modelo
    model = genai.GenerativeModel(model_choice)
    response = model.generate_content(text_prompt + image_prompt + pdf_prompt, stream=True, generation_config=generation_config)

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot

# Componentes de la interfaz de usuario con Gradio
chatbot_component = gr.Chatbot(
    label='Gemini',
    bubble_full_width=False,
    scale=2,
    height=300
)
text_prompt_component = gr.Textbox(
    placeholder="Message...", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
    label="Upload Files", file_count="multiple", file_types=["image", "pdf"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
    scale=2
)

user_inputs = [
    text_prompt_component,
    chatbot_component
]

bot_inputs = [
    upload_button_component,
    model_choice_component,
    chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML("<h1 align='center'>Gemini Playground ✨</h1>")
    gr.HTML("<h2 align='center'>Play with Gemini Pro and Gemini Pro Vision</h2>")
    with gr.Column():
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()
        model_choice_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[chatbot_component],
        queue=False
    )

demo.queue(max_size=99).launch(debug=False, show_error=True)