File size: 5,723 Bytes
6a671c6
 
 
500f371
5ef5e82
 
63666ab
bc54a0a
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5b4d0
8cb552a
 
 
abe77c6
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb552a
 
 
abe77c6
 
 
8cb552a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abe77c6
 
 
5ef5e82
 
 
 
 
abe77c6
5ef5e82
 
 
 
 
 
 
abe77c6
5ef5e82
bc54a0a
8cb552a
aca2296
 
 
 
 
5ef5e82
 
abe77c6
5ef5e82
 
 
 
bc54a0a
abe77c6
5ef5e82
 
 
abe77c6
8cb552a
5ef5e82
abe77c6
8cb552a
abe77c6
 
5ef5e82
abe77c6
cdc830d
 
 
5ef5e82
8cb552a
5ef5e82
 
 
 
 
 
c8fa5c6
68bf7f0
aca2296
5ef5e82
 
 
 
 
 
 
 
 
 
 
8cb552a
5ef5e82
 
 
 
abe77c6
 
8cb552a
5ef5e82
 
abe77c6
5ef5e82
834a27f
 
5ef5e82
b537ee8
5ef5e82
 
 
 
 
abe77c6
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc54a0a
5ef5e82
 
 
 
 
 
8607e04
cdc830d
d8bd84f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""

import os
import uuid
from typing import List, Tuple, Optional, Union

import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

print("google-generativeai:", genai.__version__)

# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]

# Configurar la API de Gemini
genai.configure(api_key=GOOGLE_API_KEY)

# Función para transformar el historial del chat
def transform_history(history: CHAT_HISTORY):
    """
    Transforma el historial del chat en el formato necesario para el modelo.
    """
    transformed = []
    for user_input, bot_response in history:
        if user_input:
            transformed.append({"role": "user", "content": user_input})
        if bot_response:
            transformed.append({"role": "assistant", "content": bot_response})
    return transformed

# Función de generación de respuesta
def response(
    message: str, history: CHAT_HISTORY, model_choice: str, system_instruction: str
) -> str:
    """
    Genera una respuesta basada en el historial del chat y el mensaje del usuario.
    """
    generation_config = genai.types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=8192,
        top_k=10,
        top_p=0.9
    )

    model = genai.GenerativeModel(
        model_name=model_choice,
        generation_config=generation_config,
        system_instruction=system_instruction,
    )

    transformed_history = transform_history(history)
    model_response = model.chat(messages=transformed_history + [{"role": "user", "content": message}])
    return model_response.text

# Preprocesamiento de imágenes
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    if image:
        image_height = int(image.height * IMAGE_WIDTH / image.width)
        return image.resize((IMAGE_WIDTH, image_height))

# Guardar imágenes en caché
def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path

# Subir imágenes
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert("RGB")
        image_preview = preprocess_image(image)
        if image_preview:
            gr.Image(image_preview).render()
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot

# Manejo del usuario
def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

# Manejo del bot con historial
def bot(
    files: Optional[List[str]],
    model_choice: str,
    system_instruction: str,
    chatbot: CHAT_HISTORY,
):
    text_prompt = chatbot[-1][0] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else ""
    bot_reply = response(text_prompt, chatbot, model_choice, system_instruction)
    chatbot[-1] = (text_prompt, bot_reply)
    return chatbot

# Componentes de la interfaz
system_instruction_component = gr.Textbox(
    placeholder="Enter system instruction...", show_label=True, scale=8
)
chatbot_component = gr.Chatbot(
    label="Gemini",
    bubble_full_width=False,
    scale=2,
    height=300
)
text_prompt_component = gr.Textbox(
    placeholder="Message...", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
    label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
    scale=2
)

user_inputs = [
    text_prompt_component,
    chatbot_component,
]

bot_inputs = [
    upload_button_component,
    model_choice_component,
    system_instruction_component,
    chatbot_component,
]

# Interfaz de usuario
with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    with gr.Column():
        model_choice_component.render()
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()
        system_instruction_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[chatbot_component],
        queue=False
    )

# Lanzar la aplicación
demo.queue(max_size=99).launch(debug=False, show_error=True)