Spaces:
Sleeping
Sleeping
File size: 5,695 Bytes
6a671c6 500f371 bc54a0a 5ef5e82 63666ab bc54a0a 5ef5e82 0f5b4d0 5ef5e82 bc54a0a aca2296 5ef5e82 bc54a0a 5ef5e82 cdc830d df22630 5ef5e82 834a27f 5ef5e82 834a27f 5ef5e82 aca2296 cdc830d df22630 5ef5e82 cdc830d 5ef5e82 c8fa5c6 68bf7f0 aca2296 5ef5e82 b537ee8 5ef5e82 cdc830d 5ef5e82 834a27f 5ef5e82 b537ee8 5ef5e82 b537ee8 5ef5e82 bc54a0a 5ef5e82 8607e04 cdc830d d8bd84f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
import os
import time
import uuid
from typing import List, Tuple, Optional, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
if image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image_preview = preprocess_image(image)
if image_preview:
# Display a preview of the uploaded image
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
files: Optional[List[str]],
model_choice: str,
system_instruction: str, # Añadido el parámetro para la instrucción del sistema
chatbot: CHAT_HISTORY
):
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set.")
# Configurar la API con la clave
genai.configure(api_key=GOOGLE_API_KEY)
generation_config = genai.types.GenerationConfig(
temperature=0.7, # Valor predeterminado
max_output_tokens=8192, # Fijar el límite de tokens a 8,192
top_k=10, # Valor predeterminado
top_p=0.9 # Valor predeterminado
)
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []
# Crear el modelo con la instrucción del sistema
model = genai.GenerativeModel(
model_name=model_choice,
generation_config=generation_config,
system_instruction=system_instruction # Se pasa la instrucción del sistema
)
response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
# Componente para ingresar la instrucción del sistema
system_instruction_component = gr.Textbox(
placeholder="Enter system instruction...", show_label=True, scale=8
)
# Definir los componentes de entrada y salida
chatbot_component = gr.Chatbot(
label='Gemini',
bubble_full_width=False,
scale=2,
height=300
)
text_prompt_component = gr.Textbox(
placeholder="Message...", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
value="gemini-1.5-flash",
label="Select Model",
scale=2
)
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
upload_button_component,
model_choice_component, # El campo de modelo está ahora arriba
system_instruction_component, # Instrucción del sistema sigue siendo separada
chatbot_component
]
# Definir la interfaz de usuario
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
with gr.Column():
# Campo de selección de modelo arriba
model_choice_component.render()
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
system_instruction_component.render() # Instrucción del sistema se coloca debajo del chat
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
# Lanzar la aplicación
demo.queue(max_size=99).launch(debug=False, show_error=True)
|