File size: 6,116 Bytes
6a671c6
 
 
500f371
bc54a0a
5ef5e82
 
63666ab
bc54a0a
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f5b4d0
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
834a27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef5e82
834a27f
bc54a0a
9b78d91
d8bd84f
 
9b78d91
d8bd84f
9b78d91
 
 
 
 
 
 
834a27f
 
9b78d91
834a27f
 
5ef5e82
 
 
 
 
 
bc54a0a
5ef5e82
 
 
 
 
 
 
834a27f
5ef5e82
 
 
834a27f
 
 
 
5ef5e82
 
 
d8bd84f
5ef5e82
834a27f
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8fa5c6
d8bd84f
9b78d91
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
834a27f
 
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc54a0a
5ef5e82
 
 
 
 
 
8607e04
d8bd84f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""

import os
import time
import uuid
from typing import List, Tuple, Optional, Union

import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

print("google-generativeai:", genai.__version__)

# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]

def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    if image:
        image_height = int(image.height * IMAGE_WIDTH / image.width)
        return image.resize((IMAGE_WIDTH, image_height))

def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path

def upload_to_gemini(path, mime_type=None):
    """Uploads the given file to Gemini."""
    file = genai.upload_file(path, mime_type=mime_type)
    print(f"Uploaded file '{file.display_name}' as: {file.uri}")
    return file

def wait_for_files_active(files):
    """Waits for the given files to be active."""
    print("Waiting for file processing...")
    for name in (file.name for file in files):
        file = genai.get_file(name)
        while file.state.name == "PROCESSING":
            print(".", end="", flush=True)
            time.sleep(10)
            file = genai.get_file(name)
        if file.state.name != "ACTIVE":
            raise Exception(f"File {file.name} failed to process")
    print("...all files ready")
    print()

def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    gemini_files = []
    for file in files:
        # Verificar si es una imagen o un archivo PDF
        if file.name.endswith('.pdf'):
            gemini_file = upload_to_gemini(file.name, mime_type="application/pdf")
        else:
            image = Image.open(file.name).convert('RGB')
            image_preview = preprocess_image(image)
            if image_preview:
                # Display a preview of the uploaded image
                gr.Image(image_preview).render()
            image_path = cache_pil_image(image)
            gemini_file = upload_to_gemini(image_path, mime_type="image/jpeg")
        
        gemini_files.append(gemini_file)

    # Esperar a que los archivos se procesen en Gemini
    wait_for_files_active(gemini_files)
    chatbot.append(((gemini_file.uri,), None))
    return chatbot

def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

def bot(
    files: Optional[List[str]],
    model_choice: str,
    chatbot: CHAT_HISTORY
):
    if not GOOGLE_API_KEY:
        raise ValueError("GOOGLE_API_KEY is not set.")

    # Configurar la API con la clave
    genai.configure(api_key=GOOGLE_API_KEY)
    generation_config = genai.types.GenerationConfig(
        temperature=0.7,  # Valor predeterminado
        max_output_tokens=8192,  # Fijar el límite de tokens a 8,192
        top_k=10,  # Valor predeterminado
        top_p=0.9   # Valor predeterminado
    )

    text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
    image_prompt = [preprocess_image(Image.open(file.name).convert('RGB')) for file in files if file.name.endswith(('.jpg', '.jpeg', '.png'))] if files else []
    model = genai.GenerativeModel(model_choice)
    response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot

chatbot_component = gr.Chatbot(
    label='Gemini',
    bubble_full_width=False,
    scale=2,
    height=300
)
text_prompt_component = gr.Textbox(
    placeholder="Message...", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.File(
    label="Upload Images or PDF", file_count="multiple", file_types=["image", "pdf"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
    scale=2
)

user_inputs = [
    text_prompt_component,
    chatbot_component
]

bot_inputs = [
    upload_button_component,
    model_choice_component,
    chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    with gr.Column():
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()
        model_choice_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[chatbot_component],
        queue=False
    )

demo.queue(max_size=99).launch(debug=False, show_error=True)