Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import google.generativeai as genai | |
| import os | |
| from dotenv import load_dotenv | |
| # Cargar variables de entorno | |
| load_dotenv() | |
| # Configurar la API de Google Gemini | |
| genai.configure(api_key=os.getenv("GEMINI_API_KEY")) | |
| def respond( | |
| message, | |
| history, | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| # Configurar el modelo de Gemini | |
| model_name = "gemini-1.5-pro" # Ajusta el modelo según sea necesario | |
| generation_config = { | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "max_output_tokens": max_tokens, | |
| "response_mime_type": "text/plain", | |
| } | |
| model = genai.GenerativeModel(model_name=model_name, generation_config=generation_config) | |
| chat_session = model.start_chat( | |
| history=messages | |
| ) | |
| response = chat_session.send_message(message) | |
| return response.text | |
| # Crear la interfaz de Gradio | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |