File size: 1,158 Bytes
3132d5e
10ee73c
3132d5e
 
 
157808e
 
 
10ee73c
3132d5e
950f514
10ee73c
3132d5e
 
10ee73c
 
 
 
 
 
 
 
54d39d3
10ee73c
 
950f514
10ee73c
 
 
 
 
3132d5e
 
10ee73c
3132d5e
 
157808e
3132d5e
10ee73c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import sqlite3
import torch

app = FastAPI()

# Load the DeepSeek model and tokenizer
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16).to("cpu")  # Use "cuda" if available


class ChatRequest(BaseModel):
    message: str

def generate_sql_query(user_input: str) -> str:
    """
    Generate an SQL query from a natural language query using the DeepSeek model.
    """
    inputs = tokenizer(user_input, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=100)
    sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return sql_query


@app.post("/chat")
def chat(request: ChatRequest):
    user_input = request.message
    
    sql_query = generate_sql_query(user_input)
    print(f"Generated SQL Query: {sql_query}")

    return {"response": sql_query}

@app.get("/")
def home():
    return {"message": "DeepSeek SQL Query API is running"}