Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import sqlite3 | |
import torch | |
app = FastAPI() | |
# Load Model & Tokenizer | |
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16).to(device) | |
def generate_sql_query(user_input): | |
""" Convert natural language input into an SQL query """ | |
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True).to(device) | |
outputs = model.generate(**inputs, max_length=600, do_sample=False, num_beams=2) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
def chat(request: dict): | |
user_input = request.get("message", "") | |
if not user_input: | |
raise HTTPException(status_code=400, detail="Message cannot be empty") | |
sql_query = generate_sql_query(user_input) | |
print(f"Generated SQL Query: {sql_query}") | |
return {"response": sql_query} | |
def home(): | |
return {"message": "DeepSeek SQL Query API is running"} | |