Spaces:
Running
Running
import pandas as pd | |
import gradio as gr | |
import os | |
import re | |
import requests | |
from dotenv import load_dotenv | |
from matplotlib.colors import LinearSegmentedColormap | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from sklearn.linear_model import LinearRegression | |
import numpy as np | |
from huggingface_hub import HfApi | |
from huggingface_hub.hf_api import HTTPError | |
from huggingface_hub.utils import GatedRepoError | |
from gradio_rangeslider import RangeSlider | |
import datetime | |
load_dotenv() | |
webhook_url = os.environ.get("WEBHOOK_URL") | |
file_name_list = [ | |
"14b", | |
"9b", | |
"7b", | |
"3b", | |
"1b5", | |
"other", | |
] | |
sheet_name_list = [ | |
"cr", | |
"bpc", | |
"bpb", | |
] | |
metric_list = [ | |
"Compression Rate (%)", | |
"Bits Per Character (BPC)", | |
"Bits Per Byte (BPB)", | |
] | |
model_size_list = [ | |
"~14B", | |
"~9B", | |
"~7B", | |
"~3B", | |
"~1.5B", | |
"Other", | |
] | |
metric_to_sheet = { | |
"Compression Rate (%)": "cr", | |
"Bits Per Character (BPC)": "bpc", | |
"Bits Per Byte (BPB)": "bpb", | |
} | |
model_size_to_file_name = { | |
"~14B": "14b", | |
"~9B": "9b", | |
"~7B": "7b", | |
"~3B": "3b", | |
"~1.5B": "1b5", | |
"Other": "other", | |
} | |
def read_about_md(): | |
with open('about.md', 'r', encoding='utf-8') as f: | |
return f.read() | |
def rename_columns(df): | |
df.columns = [col.rsplit("_", maxsplit=1)[0] for col in df.columns] | |
return df | |
def get_folders_matching_format(directory): | |
pattern = re.compile(r"^\d{4}-\d{2}$") | |
folders = [] | |
if not os.path.exists(directory): | |
return folders | |
for item in os.listdir(directory): | |
full_path = os.path.join(directory, item) | |
if os.path.isdir(full_path) and pattern.match(item): | |
folders.append(full_path) | |
return folders | |
def get_unique_column_names(data=None): | |
return [ | |
"ao3_\u200benglish", | |
"bbc_\u200bnews", | |
"wikipedia_\u200benglish", | |
"arxiv_\u200bcomputer_\u200bscience", | |
"arxiv_\u200bphysics", | |
"github_\u200bcpp", | |
"github_\u200bpython", | |
] | |
def color_cell(value): | |
return "background-color: #fffdd0" if pd.notna(value) else "default" | |
def update_table( | |
period: str, | |
models_size: list, | |
metric: str, | |
visible_columns: list, | |
color_columns: list, | |
size_range: list, | |
midpoint: float = 0.5, | |
sort_by: str = "Average (lower=better)", | |
ascending: bool = True, | |
): | |
print( | |
f"Updating - time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}, period: {period}, models: {models_size}, metric: {metric}, visible_columns: {visible_columns}, color_columns: {color_columns}, size_range: {size_range}, sort_by: {sort_by}, ascending: {ascending}\n" | |
) | |
if not models_size: | |
return "No data available for the selected models and period." | |
# return pd.DataFrame() | |
target_period_data = all_data[period] | |
target_file_name = [model_size_to_file_name[model] for model in models_size] | |
sheet_name = metric_to_sheet[metric] | |
# combined_data = pd.concat([target_period_data[file_name][sheet_name] for file_name in target_file_name], axis=0) | |
combined_data = pd.concat( | |
[df.dropna(axis=1, how="all") for df in [target_period_data[file_name][sheet_name] for file_name in target_file_name]], axis=0 | |
) | |
if len(combined_data) == 0: | |
return "No data available for the selected models and period." | |
# return pd.DataFrame() | |
# Filter models based on the size range | |
combined_data = combined_data[combined_data["Parameters Count (B)"].between(size_range[0], size_range[1])] | |
combined_data.reset_index(drop=True, inplace=True) | |
if len(combined_data) == 0: | |
return "No data available for the selected models and period." | |
# return pd.DataFrame() | |
combined_data["Name"] = combined_data["Name"].apply(lambda x: x.replace(".pth", "")) | |
ordered_columns = get_unique_column_names() | |
relevant_columns = [col for col in ordered_columns if col in visible_columns and col not in ["Name", "Parameters Count (B)", "Average (The lower the better)"]] | |
if len(combined_data) > 0: | |
combined_data["Average (The lower the better)"] = round(combined_data[relevant_columns].mean(axis=1), 3) | |
combined_data = combined_data.rename(columns={"Parameters Count (B)": "Params (B)"}) | |
combined_data = combined_data.rename(columns={"Average (The lower the better)": "Average (lower=better)"}) | |
sorted_data = combined_data.sort_values(by=sort_by, ascending=ascending) | |
visible_columns = ["Name", "Params (B)", "Average (lower=better)"] + relevant_columns | |
filtered_data = sorted_data[visible_columns] | |
filtered_data.columns = [col.replace("_", " ") for col in filtered_data.columns] | |
formatter = {col: "{:.3f}" for col in filtered_data.columns if filtered_data[col].dtype in ["float64", "float32"]} | |
# color gradient | |
colors = ["#63be7b", "#ffffff", "#f8696b"] | |
vmin = {} | |
vmax = {} | |
vmid = {} | |
for column in filtered_data.columns: | |
if column in ["Name", "Params (B)"]: | |
continue | |
col_values = filtered_data[column] | |
if len(col_values) > 1: | |
sorted_values = np.sort(col_values) | |
vmin[column] = sorted_values.min() | |
vmax[column] = sorted_values.max() | |
idx = int(len(sorted_values) * midpoint) | |
vmid[column] = sorted_values[idx] | |
def custom_background_gradient(series, cmap, vmin, vmax, vmid): | |
if len(series) == 0: | |
return series | |
def normalize(x): | |
if x <= vmid: | |
return 0.5 * (x - vmin) / (vmid - vmin) | |
else: | |
return 0.5 + 0.5 * (x - vmid) / (vmax - vmid) | |
normed = series.apply(normalize) | |
colors = [cmap(x) for x in normed] | |
return ["background-color: rgba({}, {}, {}, {})".format(*[int(255 * x) for x in c[:3]], c[3]) for c in colors] | |
target_color_columns = [] | |
if "Average" in color_columns: | |
target_color_columns.append("Average (lower=better)") | |
if "Individual Tests" in color_columns: | |
target_color_columns.extend([col for col in filtered_data.columns if col not in ["Name", "Params (B)", "Average (lower=better)"]]) | |
styler = filtered_data.style.format(formatter).map(color_cell, subset=["Params (B)"]) | |
for column in target_color_columns: | |
styler = styler.apply( | |
custom_background_gradient, | |
cmap=LinearSegmentedColormap.from_list("custom_cmap", colors), | |
vmin=vmin[column], | |
vmax=vmax[column], | |
vmid=vmid[column], | |
subset=[column], | |
) | |
# return styler | |
styler = styler.hide(axis="index") | |
widths = [300, 150, 150, 100, 100, 100, 100, 100, 100, 100, 100] | |
table_styles = [] | |
for i, w in enumerate(widths): | |
table_styles.append( | |
{ | |
"selector": "th", | |
"props": [ | |
("background-color", "#f5f5f5"), | |
("padding", "8px"), | |
("font-weight", "bold"), | |
], | |
} | |
) | |
table_styles.append( | |
{ | |
"selector": f"th.col{i}", | |
"props": [ | |
("min-width", f"{w}px"), | |
("max-width", f"{w}px"), | |
("text-align", "center"), | |
("border", "1px solid #dddddd"), | |
], | |
} | |
) | |
table_styles.append( | |
{ | |
"selector": f"td.col{i}", | |
"props": [ | |
("min-width", f"{w}px"), | |
("max-width", f"{w}px"), | |
("text-align", "center"), | |
("border", "1px solid #dddddd"), | |
], | |
} | |
) | |
table_styles.append( | |
{ | |
"selector": "table", | |
"props": [ | |
("border-collapse", "collapse"), | |
("border", "1px solid #dddddd"), | |
], | |
} | |
) | |
styler = styler.set_table_styles(table_styles) | |
html_output = styler.to_html() | |
return html_output | |
def create_world_languages_gdp_chart(): | |
languages = ["English", "Chinese", "Spanish", "Japanese", "German", "French", "Arabic", "Italian", "Portuguese", "Korean", "Other"] | |
shares = [27, 18, 8, 6, 5, 4, 3, 2, 2, 2, 23] | |
colors = ["#FF7F7F", "#FFA07A", "#FFDB58", "#90EE90", "#98FB98", "#87CEFA", "#B0C4DE", "#DDA0DD", "#D8BFD8", "#F0E68C", "#E0FFFF"] | |
fig = go.Figure( | |
data=[ | |
go.Pie( | |
labels=languages, | |
values=shares, | |
hole=0.3, | |
marker=dict(colors=colors, line=dict(color="#FFFFFF", width=2)), | |
textinfo="label+percent", | |
textposition="outside", | |
insidetextorientation="radial", | |
textfont=dict(size=12), | |
) | |
] | |
) | |
fig.update_layout( | |
title={ | |
"text": "World Languages by Share of Global GDP", | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
"font": dict(size=20, color="black"), | |
}, | |
showlegend=False, | |
width=700, | |
height=500, | |
margin=dict(t=80, b=20, l=20, r=20), | |
) | |
return fig | |
def check_model_exists(model_id): | |
api = HfApi() | |
try: | |
model_info = api.model_info(model_id) | |
return "Exists and is accessible" | |
except GatedRepoError: | |
return "Exists but is restricted" | |
except HTTPError as e: | |
if e.response.status_code == 404: | |
return "Does not exist" | |
else: | |
return "Error: " + str(e) | |
def submit_model(name): | |
if "Exists" not in check_model_exists(name): | |
return f"# ERROR: Model {name} does not exist on Hugging Face!" | |
try: | |
response = requests.post(webhook_url, json={"content": name}) | |
if response.status_code == 200: | |
response_data = response.json() | |
if response_data.get("status") == "success": | |
return "# SUCCESS: We will check the model as soon as possible. Thank you for your submission!" | |
else: | |
return f"# ERROR: {response_data.get('message', 'Unknown error')}" | |
else: | |
return f"# ERROR: Failed to submit model {name}. Server returned status code {response.status_code}." | |
except requests.exceptions.HTTPError: | |
return "# ERROR: Network error while contacting queue. Please try again in a few minutes." | |
except Exception as e: | |
print(e) | |
return "ERROR: Unexpected error. Please try again later." | |
# def create_scaling_plot(all_data, period): | |
# selected_columns = ["Name", "Parameters Count (B)", "Average (The lower the better)"] | |
# target_data = all_data[period] | |
# new_df = pd.DataFrame() | |
# for size in target_data.keys(): | |
# new_df = pd.concat([new_df, target_data[size]["cr"].loc[:, selected_columns].dropna(axis=1, how="all")], axis=0) | |
# new_df.rename(columns={"Parameters Count (B)": "Params(B)", "Average (The lower the better)": "Compression Rate (%)"}, inplace=True) | |
# new_df["Log Params(B)"] = np.log(new_df["Params(B)"]) | |
# new_df["Log Compression Rate (%)"] = np.log(new_df["Compression Rate (%)"]) | |
# fig = px.scatter( | |
# new_df, | |
# x="Log Params(B)", | |
# y="Log Compression Rate (%)", | |
# title="Compression Rate Scaling Law", | |
# hover_name="Name", | |
# custom_data=["Params(B)", "Compression Rate (%)"], | |
# ) | |
# fig.update_traces( | |
# hovertemplate="<b>%{hovertext}</b><br>Params(B): %{customdata[0]:.2f} B<br>Compression Rate (%): %{customdata[1]:.2f}<extra></extra>" | |
# ) | |
# fig.update_layout( | |
# width=800, # 设置图像宽度 | |
# height=600, # 设置图像高度 | |
# title={"text": "Compression Rate Scaling Law", "x": 0.5, "xanchor": "center", "yanchor": "top"}, | |
# showlegend=True, | |
# xaxis={"showgrid": True, "zeroline": False, "type": "linear", "title": "Params(B)"}, # 确保坐标轴类型正确 | |
# yaxis={"showgrid": True, "zeroline": False, "type": "linear", "title": "Compression Rate (%)", "autorange": "reversed"}, | |
# ) | |
# names_to_connect_dict = { | |
# "2024-05": ["Meta-Llama-3-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"], | |
# "2024-06": ["Meta-Llama-3-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"], | |
# "2024-07": ["Meta-Llama-3.1-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"], | |
# "2024-08": [ | |
# "Meta-Llama-3.1-8B", | |
# "Rene-v0.1-1.3b-pytorch", | |
# "stablelm-3b-4e1t", | |
# "Qwen2-1.5B", | |
# "TinyLlama-1.1B-intermediate-step-1431k-3T", | |
# "Mistral-Nemo-Base-2407", | |
# ], | |
# "2025-01": ["Qwen2.5-1.5B"], | |
# } | |
# names_to_connect = names_to_connect_dict.get(period, names_to_connect_dict["2024-08"]) | |
# connection_points = new_df[new_df["Name"].isin(names_to_connect)] | |
# print(connection_points) | |
# new_df["Color"] = new_df["Name"].apply(lambda name: "#39C5BB" if name in names_to_connect else "#636efa") | |
# fig.update_traces(marker=dict(color=new_df["Color"])) | |
# X = connection_points["Log Params(B)"].values.reshape(-1, 1) | |
# y = connection_points["Log Compression Rate (%)"].values | |
# model = LinearRegression().fit(X, y) | |
# x_min = connection_points["Log Params(B)"].min() | |
# x_max = connection_points["Log Params(B)"].max() | |
# extended_x = np.linspace(x_min, x_max * 1.5, 100) | |
# extended_x_original = np.exp(extended_x) | |
# trend_line_y = model.predict(extended_x.reshape(-1, 1)) | |
# trend_line_y_original = np.exp(trend_line_y) | |
# trend_line = go.Scatter( | |
# x=extended_x, | |
# y=trend_line_y, | |
# mode="lines", | |
# line=dict(color="skyblue", dash="dash"), | |
# name="Trend Line", | |
# hovertemplate="<b>Params(B):</b> %{customdata[0]:.2f}<br>" + "<b>Compression Rate (%):</b> %{customdata[1]:.2f}<extra></extra>", | |
# customdata=np.stack((extended_x_original, trend_line_y_original), axis=-1), | |
# ) | |
# fig.add_trace(trend_line) | |
# x_min = new_df["Params(B)"].min() | |
# x_max = new_df["Params(B)"].max() | |
# x_tick_vals = np.geomspace(x_min, x_max, num=5) | |
# x_tick_text = [f"{val:.1f}" for val in x_tick_vals] | |
# y_min = new_df["Compression Rate (%)"].min() | |
# y_max = new_df["Compression Rate (%)"].max() | |
# y_tick_vals = np.geomspace(y_min, y_max, num=5) | |
# y_tick_text = [f"{val:.1f}" for val in y_tick_vals] | |
# fig.update_xaxes(tickvals=np.log(x_tick_vals), ticktext=x_tick_text, title="Params(B)") | |
# fig.update_yaxes(tickvals=np.log(y_tick_vals), ticktext=y_tick_text, title="Compression Rate (%)", autorange="reversed") | |
# fig.update_layout(xaxis=dict(showgrid=True, zeroline=False), yaxis=dict(showgrid=True, zeroline=False)) | |
# fig.update_traces(marker=dict(size=12)) | |
# print(fig.layout) | |
# return fig | |
def create_scaling_plot(all_data, period): | |
selected_columns = ["Name", "Parameters Count (B)", "Average (The lower the better)"] | |
target_data = all_data[period] | |
new_df = pd.DataFrame() | |
for size in target_data.keys(): | |
new_df = pd.concat([new_df, target_data[size]["cr"].loc[:, selected_columns].dropna(axis=1, how="all")], axis=0) | |
x_values = new_df["Parameters Count (B)"].astype(float).tolist() | |
y_values = new_df["Average (The lower the better)"].astype(float).tolist() | |
names = new_df["Name"].tolist() | |
x_min, x_max = np.log10(min(x_values)), np.log10(max(x_values)) | |
y_min, y_max = np.log10(min(y_values)), np.log10(max(y_values)) | |
x_dtick = (x_max - x_min) / 4 | |
y_dtick = (y_max - y_min) / 4 | |
fig = go.Figure() | |
fig.add_trace( | |
go.Scatter( | |
x=x_values, | |
y=y_values, | |
mode="markers", | |
name="Models", | |
marker=dict(size=12, color="#39C5BB", opacity=0.8), | |
text=names, | |
customdata=list(zip(x_values, y_values)), | |
hovertemplate=( | |
"<b>%{text}</b><br>" + "Params: %{customdata[0]:.2f}B<br>" + "Compression Rate: %{customdata[1]:.2f}%<br>" + "<extra></extra>" | |
), | |
) | |
) | |
fig.update_layout( | |
title={"text": "Compression Rate Scaling Law", "x": 0.5, "xanchor": "center", "yanchor": "top"}, | |
width=800, | |
height=600, | |
showlegend=True, | |
xaxis=dict( | |
title="Parameters (B)", | |
showgrid=True, | |
zeroline=False, | |
type="log", | |
dtick=x_dtick, | |
tickformat=".2f", | |
range=[x_min - 0.1, x_max + 0.1], | |
), | |
yaxis=dict( | |
title="Compression Rate (%)", | |
showgrid=True, | |
zeroline=False, | |
type="log", | |
dtick=y_dtick, | |
tickformat=".2f", | |
range=[y_min - 0.1, y_max + 0.1], | |
autorange="reversed", | |
), | |
) | |
return fig | |
def read_all_data(folder_name): | |
all_data = {} | |
time_list = [] | |
for folder in get_folders_matching_format(folder_name): | |
folder_name = os.path.basename(folder) | |
time_list.append(folder_name) | |
if all_data.get(folder) is None: | |
all_data[folder_name] = {} | |
for file_name in file_name_list: | |
if all_data.get(file_name) is None: | |
all_data[folder_name][file_name] = {} | |
for sheet_name in sheet_name_list: | |
final_file_name = os.path.join(folder, file_name) | |
all_data[folder_name][file_name][sheet_name] = rename_columns(pd.read_excel(final_file_name + ".xlsx", sheet_name=sheet_name)) | |
return all_data, time_list | |
# def read_mutilange_data(folder_path='mutilang_data'): | |
# mutilange_data = {} | |
# excel_files = [os.path.join(folder_path, file) for file in os.listdir(folder_path) if file.endswith('.xlsx')] | |
# time_list = [file.split('.')[0] for file in excel_files] | |
# time_list = [x.split('\\')[-1] for x in time_list] | |
# for file_name in excel_files: | |
# if mutilange_data.get(file_name) is None: | |
# mutilange_data[file_name] = {} | |
# for sheet_name in sheet_name_list: | |
# mutilange_data[file_name][sheet_name] = rename_columns( | |
# pd.read_excel(file_name, sheet_name=sheet_name)) | |
# return mutilange_data, time_list | |
all_data, time_list = read_all_data("data") | |
# muti_lang_data, muti_lang_time_list = read_mutilange_data() | |
time_list.sort() | |
last_period = time_list[-2] | |
initial_fig = create_scaling_plot(all_data, last_period) | |
initial_metric = metric_list[0] | |
initial_columns = get_unique_column_names(all_data) | |
initial_colors = ["Average", "Individual Tests"] | |
initial_size_range = [0, 40] | |
initial_data = update_table(last_period, model_size_list, initial_metric, initial_columns, initial_colors, initial_size_range) | |
css = """ | |
.gradio-container { | |
max-width: 95% !important; | |
margin: 0 auto; | |
} | |
.tab-buttons button { | |
font-size: 1.3em; | |
} | |
.gr-dataframe th { | |
white-space: normal; | |
word-break: break-word; | |
} | |
table { | |
margin-left: auto !important; | |
margin-right: auto !important; | |
width: 100% !important; | |
} | |
""" | |
TITLE_HTML = '<h1 style="text-align:center"><span style="font-size:1.3em">🏆 LLM Compression Leaderboard</span></h1>' | |
SUBTITLE_HTML = "<h1 style='text-align:center'><span style='font-size:0.8em'>Welcome to Uncheatable Eval LLM Compression Leaderboard, where fancy fine-tuning and cheating won't work 🚫; only compute 💻, data 📊, and real innovation 🔥 can prevail!</span></h1>" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(TITLE_HTML) | |
gr.HTML(SUBTITLE_HTML) | |
with gr.Tabs() as tabs: | |
with gr.Tab("🏆 Leaderboard"): | |
with gr.Row(): | |
with gr.Column(): | |
period_selector = gr.Dropdown(label="Period", choices=time_list, value=last_period) | |
model_selector = gr.CheckboxGroup(label="Model Size", choices=model_size_list, value=model_size_list) | |
size_range_slider = RangeSlider(minimum=0, maximum=40, value=[0, 40], step=0.1, label="Model Size Range") | |
metric_selector = gr.Dropdown(label="Metric", choices=metric_list, value=initial_metric) | |
with gr.Column(): | |
midpoint_slider = gr.Slider(minimum=0.1, maximum=0.9, value=0.5, step=0.01, label="Color Gradient Midpoint") | |
color_selector = gr.CheckboxGroup(label="Colored Columns", choices=["Average", "Individual Tests"], value=initial_colors) | |
colfilter = gr.CheckboxGroup(label="Data Source", choices=get_unique_column_names(all_data), value=initial_columns) | |
table = gr.HTML(initial_data) | |
period_selector.change( | |
update_table, | |
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider], | |
outputs=table, | |
) | |
model_selector.change( | |
update_table, | |
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider], | |
outputs=table, | |
) | |
metric_selector.change( | |
update_table, | |
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider], | |
outputs=table, | |
) | |
colfilter.change( | |
update_table, | |
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider], | |
outputs=table, | |
) | |
color_selector.change( | |
update_table, | |
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider], | |
outputs=table, | |
) | |
size_range_slider.change( | |
update_table, | |
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider], | |
outputs=table, | |
) | |
midpoint_slider.change( | |
update_table, | |
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider], | |
outputs=table, | |
) | |
with gr.Tab("🌍 MultiLang"): | |
gr.Markdown("## Coming soon...") | |
world_languages_plot = gr.Plot(create_world_languages_gdp_chart()) | |
with gr.Tab("📈 Scaling Law"): | |
period_selector_2 = gr.Dropdown(label="Period", choices=time_list, value=last_period) | |
def update_plot(period): | |
new_fig = create_scaling_plot(all_data, period) | |
return new_fig | |
plot = gr.Plot(initial_fig) | |
period_selector_2.change(update_plot, inputs=period_selector_2, outputs=plot) | |
with gr.Tab("ℹ️ About"): | |
gr.Markdown(read_about_md()) | |
with gr.Tab("🚀 Submit"): | |
with gr.Group(): | |
with gr.Row(): | |
model_name = gr.Textbox(max_lines=1, placeholder="Enter model name...", show_label=False, scale=4) | |
submit = gr.Button("Submit", variant="primary", scale=0) | |
output = gr.Markdown("# Enter a public HF repo id, then hit Submit to add it to the evaluation queue.") | |
submit.click(fn=submit_model, inputs=model_name, outputs=output) | |
demo.launch(share=False) | |