Spaces:
Running
Running
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import streamlit as st | |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型) | |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned" | |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True) | |
emoji_model = AutoModelForCausalLM.from_pretrained( | |
emoji_model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
).to("cuda" if torch.cuda.is_available() else "cpu") | |
emoji_model.eval() | |
# ✅ Step 2: 可选择的冒犯性文本识别模型 | |
model_options = { | |
"Toxic-BERT": "unitary/toxic-bert", | |
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive", | |
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion" | |
} | |
# ✅ 页面配置 | |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide") | |
# ✅ 页面标题 | |
st.title("🧠 Emoji-based Offensive Language Classifier") | |
st.markdown(""" | |
This application translates emojis in a sentence and classifies whether the final sentence is offensive or not using two AI models. | |
- The **first model** translates emoji or symbolic phrases into standard Chinese text. | |
- The **second model** performs offensive language detection. | |
""") | |
# Streamlit 侧边栏模型选择 | |
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys())) | |
selected_model_id = model_options[selected_model] | |
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1) | |
# ✅ 输入区域 | |
st.markdown("### ✍️ Input your sentence:") | |
default_text = "你是🐷" | |
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150) | |
# ✅ 主逻辑封装函数 | |
def classify_emoji_text(text: str): | |
prompt = f"输入:{text}\n输出:" | |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device) | |
with torch.no_grad(): | |
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False) | |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip() | |
result = classifier(translated_text)[0] | |
label = result["label"] | |
score = result["score"] | |
return translated_text, label, score | |
# ✅ 触发按钮 | |
if st.button("🚦 Analyze"): | |
with st.spinner("🔍 Processing..."): | |
try: | |
translated, label, score = classify_emoji_text(text) | |
st.markdown("### 🔄 Translated sentence:") | |
st.code(translated, language="text") | |
st.markdown(f"### 🎯 Prediction: `{label}`") | |
st.markdown(f"### 📊 Confidence Score: `{score:.2%}`") | |
except Exception as e: | |
st.error(f"❌ An error occurred during processing:\n\n{e}") | |
else: | |
st.info("👈 Please input text and click the button to classify.") | |