5240_assignment / app.py
Jessiesj's picture
Update app.py
1d281df verified
raw
history blame
1.87 kB
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
# function part
# img2text
def img2text(url):
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
return text
# text2story
def text2story(text):
text_to_story = pipeline("text-generation", model="TheBloke/storytime-13B-GPTQ")
# story_text = "" # to be completed
story_text = text_to_story(text)[0]["generated_text"]
return story_text
# text2audio
def text2audio(story_text):
text_to_audio = pipeline("text-to-audio", model="facebook/musicgen-medium")
audio_data = text_to_audio(story_text)
return audio_data
st.set_page_config(page_title="Your Image to Audio Story",
page_icon="🦜")
st.header("Turn Your Image to Audio Story")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image",
use_column_width=True)
#Stage 1: Image to Text
st.text('Processing img2text...')
scenario = img2text(uploaded_file.name)
st.write(scenario)
#Stage 2: Text to Story
st.text('Generating a story...')
story = text2story(scenario)
st.write(story)
# #Stage 3: Story to Audio data
# st.text('Generating audio data...')
# audio_data =text2audio(story)
# # Play button
# if st.button("Play Audio"):
# st.audio(audio_data['audio'],
# format="audio/wav",
# start_time=0,
# sample_rate = audio_data['sampling_rate'])
# # st.audio("kids_playing_audio.wav")