Spaces:
Runtime error
Runtime error
Commit
·
9991ce4
1
Parent(s):
f74b624
Create demo123
Browse files
demo123
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install Streamlit and pyngrok
|
2 |
+
!pip install -q streamlit
|
3 |
+
!pip install -q pyngrok
|
4 |
+
!pip install -q pdfplumber
|
5 |
+
!pip install -q transformers
|
6 |
+
!pip install -q tabula-py
|
7 |
+
!pip install -q openai
|
8 |
+
|
9 |
+
|
10 |
+
# Write the Streamlit app script
|
11 |
+
# Write the Streamlit app script
|
12 |
+
%%writefile app.py
|
13 |
+
import streamlit as st
|
14 |
+
import pdfplumber
|
15 |
+
import torch
|
16 |
+
from transformers import RobertaTokenizer, RobertaModel
|
17 |
+
import nltk
|
18 |
+
import openai
|
19 |
+
from torch import nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from nltk.tokenize import sent_tokenize
|
22 |
+
|
23 |
+
# Download the 'punkt' package
|
24 |
+
nltk.download('punkt')
|
25 |
+
|
26 |
+
openai.api_key = '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'
|
27 |
+
|
28 |
+
# Define your model architecture
|
29 |
+
class Bert_model(nn.Module):
|
30 |
+
def __init__(self, hidden_size, dropout_rate):
|
31 |
+
super(Bert_model, self).__init__()
|
32 |
+
self.hidden_size = hidden_size
|
33 |
+
self.bert = RobertaModel.from_pretrained('deepset/roberta-base-squad2')
|
34 |
+
self.cls_prj = nn.Linear(hidden_size, hidden_size, bias=True)
|
35 |
+
self.cls_dropout = nn.Dropout(dropout_rate)
|
36 |
+
self.cls_final = nn.Linear(hidden_size, 2, bias=True)
|
37 |
+
|
38 |
+
def forward(self, input_ids, attention_mask):
|
39 |
+
bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
40 |
+
bert_sequence_output = bert_outputs.last_hidden_state
|
41 |
+
bert_pooled_output = bert_sequence_output[:, 0, :]
|
42 |
+
pooled_output = self.cls_prj(bert_pooled_output)
|
43 |
+
pooled_output = self.cls_dropout(pooled_output)
|
44 |
+
logits = self.cls_final(pooled_output)
|
45 |
+
return logits
|
46 |
+
|
47 |
+
# Load the model
|
48 |
+
model_path = "/content/model.pt" # Replace with your actual model path
|
49 |
+
state_dict = torch.load(model_path)
|
50 |
+
device = "cuda" # or "cpu" if GPU is not available
|
51 |
+
|
52 |
+
# Instantiate the model architecture
|
53 |
+
model = Bert_model(hidden_size=768, dropout_rate=0.1) # Adjust the hidden size to match the saved model
|
54 |
+
model = nn.DataParallel(model)
|
55 |
+
model.load_state_dict(state_dict)
|
56 |
+
model = model.to(device)
|
57 |
+
model.eval()
|
58 |
+
|
59 |
+
# Load the tokenizer
|
60 |
+
tokenizer = RobertaTokenizer.from_pretrained('deepset/roberta-base-squad2')
|
61 |
+
|
62 |
+
# Function to preprocess PDF text
|
63 |
+
def preprocess_pdf(pdf_path, tokenizer):
|
64 |
+
with pdfplumber.open(pdf_path) as pdf:
|
65 |
+
text = " ".join([page.extract_text() for page in pdf.pages[2:]])
|
66 |
+
tokenized_text = tokenizer.encode_plus(
|
67 |
+
text,
|
68 |
+
add_special_tokens=True,
|
69 |
+
max_length=512,
|
70 |
+
padding='max_length',
|
71 |
+
return_attention_mask=True
|
72 |
+
)
|
73 |
+
input_ids = torch.tensor([tokenized_text['input_ids']])
|
74 |
+
attention_mask = torch.tensor([tokenized_text['attention_mask']])
|
75 |
+
return input_ids, attention_mask, text
|
76 |
+
|
77 |
+
def translate_text(text, target_language):
|
78 |
+
response = openai.ChatCompletion.create(
|
79 |
+
model="gpt-4",
|
80 |
+
messages=[
|
81 |
+
{"role": "system", "content": "You are a helpful assistant that translates English text to other languages."},
|
82 |
+
{"role": "user", "content": f'Translate the following English text to {target_language}: "{text}"'},
|
83 |
+
],
|
84 |
+
)
|
85 |
+
return response.choices[0].message['content']
|
86 |
+
|
87 |
+
def explain_term(term):
|
88 |
+
response = openai.ChatCompletion.create(
|
89 |
+
model="gpt-4",
|
90 |
+
messages=[
|
91 |
+
{
|
92 |
+
"role": "system",
|
93 |
+
"content": "You are a helpful assistant that provides definitions."
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"role": "user",
|
97 |
+
"content": f"Explain the term: {term}"
|
98 |
+
},
|
99 |
+
],
|
100 |
+
)
|
101 |
+
return response['choices'][0]['message']['content']
|
102 |
+
|
103 |
+
# Streamlit code to upload file
|
104 |
+
st.title('FinQA (Financial Question-Answering)')
|
105 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
106 |
+
|
107 |
+
# Select language
|
108 |
+
language = st.selectbox('Select your language', ['English', 'French','Chinese','Korean','Spanish','German','Japanese'])
|
109 |
+
|
110 |
+
if uploaded_file is not None:
|
111 |
+
with open("temp.pdf", "wb") as f:
|
112 |
+
f.write(uploaded_file.getbuffer())
|
113 |
+
input_ids, attention_mask, text = preprocess_pdf("temp.pdf", tokenizer)
|
114 |
+
st.write('File successfully uploaded and processed')
|
115 |
+
|
116 |
+
# Ask a question
|
117 |
+
question = st.text_input("Enter your question:")
|
118 |
+
|
119 |
+
if question:
|
120 |
+
sentences = sent_tokenize(text)
|
121 |
+
predictions = []
|
122 |
+
|
123 |
+
for sentence in sentences:
|
124 |
+
inputs = tokenizer.encode_plus(question, sentence, return_tensors='pt', padding='max_length', truncation=True, max_length=512)
|
125 |
+
input_ids = inputs['input_ids'].to(device)
|
126 |
+
attention_mask = inputs['attention_mask'].to(device)
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
outputs = model(input_ids, attention_mask)
|
130 |
+
probabilities = F.softmax(outputs, dim=1)
|
131 |
+
max_value, max_index = torch.max(probabilities, dim=1)
|
132 |
+
prediction = max_index.item()
|
133 |
+
predictions.append((sentence, prediction, probabilities[0].tolist()))
|
134 |
+
|
135 |
+
predictions.sort(key=lambda pair: pair[1], reverse=True)
|
136 |
+
top_5_sentences = predictions[:13]
|
137 |
+
|
138 |
+
#st.write("Top 5 Relevant Sentences:")
|
139 |
+
#for sentence, prediction, probabilities in top_5_sentences:
|
140 |
+
#st.write(f"Sentence: {sentence}, Prediction: {prediction}, Probability: {probabilities[prediction]}")
|
141 |
+
|
142 |
+
# Prepare the chat history with the top 3 sentences
|
143 |
+
chat_history = "\n".join([sentence[0] for sentence in top_5_sentences])
|
144 |
+
|
145 |
+
# Ask the question using OpenAI API
|
146 |
+
openai.api_key = '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' # Replace with your actual OpenAI API key
|
147 |
+
|
148 |
+
response = openai.ChatCompletion.create(
|
149 |
+
model="gpt-4",
|
150 |
+
messages=[
|
151 |
+
{"role": "system", "content": "You are a helpful generator which read the short paragraphs and answer the question."},
|
152 |
+
{"role": "user", "content": chat_history},
|
153 |
+
{"role": "user", "content": question},
|
154 |
+
]
|
155 |
+
)
|
156 |
+
|
157 |
+
if language != 'English':
|
158 |
+
response_content = translate_text(response.choices[0].message['content'], language)
|
159 |
+
else:
|
160 |
+
response_content = response.choices[0].message['content']
|
161 |
+
|
162 |
+
st.text("Answer: " + response_content)
|
163 |
+
|
164 |
+
term = st.text_input("Enter a term you want to define:")
|
165 |
+
|
166 |
+
if term:
|
167 |
+
# Define the term using OpenAI API
|
168 |
+
definition = explain_term(term)
|
169 |
+
|
170 |
+
if language != 'English':
|
171 |
+
definition = translate_text(definition, language)
|
172 |
+
|
173 |
+
st.text("Definition: " + definition)
|