Spaces:
Running
Running
File size: 9,399 Bytes
a383d0e 1cc14d1 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import argparse, asyncio, cv2, json, os, sys
from pathlib import Path
import numpy as np
from playwright.async_api import async_playwright
# ---------- Main logic ----------
async def extract_bboxes_from_html(html_path: Path):
async with async_playwright() as p:
browser = await p.chromium.launch()
ctx = await browser.new_context(
viewport={"width": 1280, "height": 720},
)
page = await ctx.new_page()
await page.goto(html_path.resolve().as_uri())
metrics = await page.evaluate("""
() => {
const region_containers = Array.from(document.querySelectorAll('.box[id]'));
const region_bboxes = region_containers.map(el => {
const rect = el.getBoundingClientRect();
return { id: el.id, x: rect.x, y: rect.y, w: rect.width, h: rect.height };
});
const placeholder_bboxes = [];
let ph_id_counter = 0;
const all_potential_placeholders = document.querySelectorAll('img[src="placeholder.png"]');
for (const el of all_potential_placeholders) {
// Apply the same filters as before
if (el.tagName === 'SVG') continue;
if (el.innerText && el.innerText.trim() !== '') continue;
const el_rect = el.getBoundingClientRect();
const el_center = { x: el_rect.left + el_rect.width / 2, y: el_rect.top + el_rect.height / 2 };
// Find which region this placeholder is inside
let containing_region_id = null;
for (const region_el of region_containers) {
const region_rect = region_el.getBoundingClientRect();
if (el_center.x >= region_rect.left && el_center.x <= region_rect.right &&
el_center.y >= region_rect.top && el_center.y <= region_rect.bottom) {
containing_region_id = region_el.id;
break; // Assume non-overlapping regions
}
}
if (containing_region_id) {
placeholder_bboxes.push({
id: 'ph' + ph_id_counter++,
x: el_rect.x,
y: el_rect.y,
w: el_rect.width,
h: el_rect.height,
region_id: containing_region_id
});
}
}
const layout_rect = document.documentElement.getBoundingClientRect();
return {
region_bboxes,
placeholder_bboxes,
layout_width: layout_rect.width,
layout_height: layout_rect.height
};
}
""")
await browser.close()
return metrics['region_bboxes'], metrics['placeholder_bboxes'], metrics['layout_width'], metrics['layout_height']
def draw_bboxes_on_image(img, region_bboxes, placeholder_bboxes):
"""Draw region (green) and placeholder (red) boxes with labels on img."""
boxed = img.copy()
H, W = img.shape[:2]
# --- Helper to draw a single box with label ---
def draw_box_with_label(b, color, label_text):
x, y, w, h = b["x"], b["y"], b["w"], b["h"]
# Boundary correction
x_draw, y_draw = max(0, x), max(0, y)
w_draw, h_draw = min(w, W - x_draw), min(h, H - y_draw)
cv2.rectangle(boxed, (x_draw, y_draw), (x_draw + w_draw, y_draw + h_draw), color, 3) # Thicker lines
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.8
font_thickness = 2
text_color = (255, 255, 255)
(text_width, text_height), baseline = cv2.getTextSize(label_text, font, font_scale, font_thickness)
# Position for the label background. Put it just above the box.
label_y_start = y - text_height - baseline - 5
if label_y_start < 0: # Adjust if the label goes off the top of the image
label_y_start = y + 5
label_x_start = x
label_y_end = label_y_start + text_height + baseline
cv2.rectangle(boxed, (label_x_start, label_y_start), (label_x_start + text_width, label_y_end), color, cv2.FILLED)
cv2.putText(boxed, label_text, (label_x_start + 2, label_y_start + text_height), font, font_scale, text_color, font_thickness)
# --- Draw Regions (Green) ---
for b in region_bboxes:
draw_box_with_label(b, color=(0, 255, 0), label_text=f'Area_{b.get("id", "")}')
# --- Draw Placeholders (Red) ---
for b in placeholder_bboxes:
draw_box_with_label(b, color=(0, 0, 255), label_text=f'{b.get("region_id")}_{b.get("id")}')
return boxed
def main():
args = get_args()
run_id = args.run_id
# --- Dynamic Path Construction ---
base_dir = Path(__file__).parent.resolve()
# Go up one level to the project root to find the data directory
project_root = base_dir.parent
tmp_dir = project_root / 'screencoder' / 'data' / 'tmp' / run_id
output_dir = project_root / 'screencoder' / 'data' / 'output' / run_id
html_path = output_dir / f"{run_id}_layout.html"
screenshot_path = tmp_dir / f"{run_id}.png"
output_json_path = tmp_dir / f"{run_id}_bboxes.json"
debug_image_path = tmp_dir / f"debug_gray_bboxes_{run_id}.png"
if not html_path.exists():
sys.exit(f"Error: HTML file not found at {html_path}")
if not screenshot_path.exists():
sys.exit(f"Error: Screenshot not found at {screenshot_path}")
print(f"--- Starting Image Box Detection for run_id: {run_id} ---")
# Read original screenshot
img = cv2.imread(str(screenshot_path))
if img is None:
sys.exit(f"Error: Cannot read image {screenshot_path}")
if img.std() < 5:
print("Warning: The screenshot is almost pure color, it may not be the original screenshot with real thumbnails.")
H, W = img.shape[:2]
# Parse HTML → Get bboxes
region_bboxes, placeholder_bboxes, layout_width, layout_height = asyncio.run(
extract_bboxes_from_html(html_path)
)
if not placeholder_bboxes:
# This is not necessarily an error; some UIs might not have placeholders.
print("Info: No gray placeholder blocks found.")
# Calculate separate scale factors for X and Y to handle aspect ratio differences
scale_x = W / layout_width if layout_width > 0 else 1
scale_y = H / layout_height if layout_height > 0 else 1
if abs(scale_x - scale_y) > 0.05:
print(f"[*] Detected different X/Y scales. X: {scale_x:.2f}, Y: {scale_y:.2f}")
elif abs(scale_x - 1.0) > 0.05:
print(f"[*] Detected uniform scale: {scale_x:.2f}")
# Scale all bboxes to the original image coordinate system
scaled_regions = []
for b in region_bboxes:
scaled_regions.append({
**b,
"x": int(b['x'] * scale_x), "y": int(b['y'] * scale_y),
"w": int(b['w'] * scale_x), "h": int(b['h'] * scale_y)
})
scaled_placeholders = []
for b in placeholder_bboxes:
scaled_placeholders.append({
**b,
"x": int(b['x'] * scale_x), "y": int(b['y'] * scale_y),
"w": int(b['w'] * scale_x), "h": int(b['h'] * scale_y)
})
# Draw boxes using the now-scaled data
overlay = draw_bboxes_on_image(img, scaled_regions, scaled_placeholders)
# Save debug image
debug_image_path.parent.mkdir(parents=True, exist_ok=True)
cv2.imwrite(str(debug_image_path), overlay)
print(f"Success: BBox overlay saved to {debug_image_path}")
# Convert absolute pixel coordinates to proportions for the final JSON output
proportional_regions = []
for b in scaled_regions:
proportional_regions.append({
**b,
"x": b["x"] / W, "y": b["y"] / H,
"w": b["w"] / W, "h": b["h"] / H
})
proportional_placeholders = []
for b in scaled_placeholders:
proportional_placeholders.append({
**b,
"x": b["x"] / W, "y": b["y"] / H,
"w": b["w"] / W, "h": b["h"] / H
})
# Print/save bbox array
print("\n=== BBox (proportional to image dimensions) ===")
output_data = {
"regions": proportional_regions,
"placeholders": proportional_placeholders
}
output_json = json.dumps(output_data, indent=2, ensure_ascii=False)
print(output_json)
output_json_path.parent.mkdir(parents=True, exist_ok=True)
output_json_path.write_text(output_json)
print(f"Success: BBox list saved to {output_json_path}")
print(f"--- Image Box Detection Complete for run_id: {run_id} ---")
def get_args():
parser = argparse.ArgumentParser(
description="Extracts placeholder bounding boxes from an HTML file and maps them to a screenshot."
)
parser.add_argument('--run_id', required=True, type=str,
help="A unique identifier for the processing run.")
return parser.parse_args()
# ---------- CLI ----------
if __name__ == "__main__":
main()
|