File size: 19,389 Bytes
a383d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import numpy as np
import cv2
from collections import Counter

import lib_ip.ip_draw as draw
from config.CONFIG_UIED import Config
C = Config()


# detect object(connected region)
# def boundary_bfs_connected_area(img, x, y, mark):
#     def neighbor(img, x, y, mark, stack):
#         for i in range(x - 1, x + 2):
#             if i < 0 or i >= img.shape[0]: continue
#             for j in range(y - 1, y + 2):
#                 if j < 0 or j >= img.shape[1]: continue
#                 if img[i, j] == 255 and mark[i, j] == 0:
#                     stack.append([i, j])
#                     mark[i, j] = 255
#
#     stack = [[x, y]]  # points waiting for inspection
#     area = [[x, y]]  # points of this area
#     mark[x, y] = 255  # drawing broad
#
#     while len(stack) > 0:
#         point = stack.pop()
#         area.append(point)
#         neighbor(img, point[0], point[1], mark, stack)
#     return area


# def line_check_perpendicular(lines_h, lines_v, max_thickness):
#     """
#     lines: [line_h, line_v]
#         -> line_h: horizontal {'head':(column_min, row), 'end':(column_max, row), 'thickness':int)
#         -> line_v: vertical {'head':(column, row_min), 'end':(column, row_max), 'thickness':int}
#     """
#     is_per_h = np.full(len(lines_h), False)
#     is_per_v = np.full(len(lines_v), False)
#     for i in range(len(lines_h)):
#         # save the intersection point of h
#         lines_h[i]['inter_point'] = set()
#         h = lines_h[i]
#
#         for j in range(len(lines_v)):
#             # save the intersection point of v
#             if 'inter_point' not in lines_v[j]: lines_v[j]['inter_point'] = set()
#             v = lines_v[j]
#
#             # if h is perpendicular to v in head of v
#             if abs(h['head'][1]-v['head'][1]) <= max_thickness:
#                 if abs(h['head'][0] - v['head'][0]) <= max_thickness:
#                     lines_h[i]['inter_point'].add('head')
#                     lines_v[j]['inter_point'].add('head')
#                     is_per_h[i] = True
#                     is_per_v[j] = True
#                 elif abs(h['end'][0] - v['head'][0]) <= max_thickness:
#                     lines_h[i]['inter_point'].add('end')
#                     lines_v[j]['inter_point'].add('head')
#                     is_per_h[i] = True
#                     is_per_v[j] = True
#
#             # if h is perpendicular to v in end of v
#             elif abs(h['head'][1]-v['end'][1]) <= max_thickness:
#                 if abs(h['head'][0] - v['head'][0]) <= max_thickness:
#                     lines_h[i]['inter_point'].add('head')
#                     lines_v[j]['inter_point'].add('end')
#                     is_per_h[i] = True
#                     is_per_v[j] = True
#                 elif abs(h['end'][0] - v['head'][0]) <= max_thickness:
#                     lines_h[i]['inter_point'].add('end')
#                     lines_v[j]['inter_point'].add('end')
#                     is_per_h[i] = True
#                     is_per_v[j] = True
#     per_h = []
#     per_v = []
#     for i in range(len(is_per_h)):
#         if is_per_h[i]:
#             lines_h[i]['inter_point'] = list(lines_h[i]['inter_point'])
#             per_h.append(lines_h[i])
#     for i in range(len(is_per_v)):
#         if is_per_v[i]:
#             lines_v[i]['inter_point'] = list(lines_v[i]['inter_point'])
#             per_v.append(lines_v[i])
#     return per_h, per_v


# def line_shrink_corners(corner, lines_h, lines_v):
#     """
#     shrink the corner according to lines:
#              col_min_shrink: shrink right (increase)
#              col_max_shrink: shrink left  (decrease)
#              row_min_shrink: shrink down  (increase)
#              row_max_shrink: shrink up    (decrease)
#     :param lines_h: horizontal {'head':(column_min, row), 'end':(column_max, row), 'thickness':int)
#     :param lines_v: vertical {'head':(column, row_min), 'end':(column, row_max), 'thickness':int}
#     :return: shrunken corner: (top_left, bottom_right)
#     """
#     (col_min, row_min), (col_max, row_max) = corner
#     col_min_shrink, row_min_shrink = col_min, row_min
#     col_max_shrink, row_max_shrink = col_max, row_max
#     valid_frame = False
#
#     for h in lines_h:
#         # ignore outer border
#         if len(h['inter_point']) == 2:
#             valid_frame = True
#             continue
#         # shrink right -> col_min move to end
#         if h['inter_point'][0] == 'head':
#             col_min_shrink = max(h['end'][0], col_min_shrink)
#         # shrink left -> col_max move to head
#         elif h['inter_point'][0] == 'end':
#             col_max_shrink = min(h['head'][0], col_max_shrink)
#
#     for v in lines_v:
#         # ignore outer border
#         if len(v['inter_point']) == 2:
#             valid_frame = True
#             continue
#         # shrink down -> row_min move to end
#         if v['inter_point'][0] == 'head':
#             row_min_shrink = max(v['end'][1], row_min_shrink)
#         # shrink up -> row_max move to head
#         elif v['inter_point'][0] == 'end':
#             row_max_shrink = min(v['head'][1], row_max_shrink)
#
#     # return the shrunken corner if only there is line intersecting with two other lines
#     if valid_frame:
#         return (col_min_shrink, row_min_shrink), (col_max_shrink, row_max_shrink)
#     return corner


# def line_cvt_relative_position(col_min, row_min, lines_h, lines_v):
#     """
#     convert the relative position of lines in the entire image
#     :param col_min: based column the img lines belong to
#     :param row_min: based row the img lines belong to
#     :param lines_h: horizontal {'head':(column_min, row), 'end':(column_max, row), 'thickness':int)
#     :param lines_v: vertical {'head':(column, row_min), 'end':(column, row_max), 'thickness':int}
#     :return: lines_h_cvt, lines_v_cvt
#     """
#     for h in lines_h:
#         h['head'][0] += col_min
#         h['head'][1] += row_min
#         h['end'][0] += col_min
#         h['end'][1] += row_min
#     for v in lines_v:
#         v['head'][0] += col_min
#         v['head'][1] += row_min
#         v['end'][0] += col_min
#         v['end'][1] += row_min
#
#     return lines_h, lines_v


# check if an object is so slim
# @boundary: [border_up, border_bottom, border_left, border_right]
# -> up, bottom: (column_index, min/max row border)
# -> left, right: (row_index, min/max column border) detect range of each row
def clipping_by_line(boundary, boundary_rec, lines):
    boundary = boundary.copy()
    for orient in lines:
        # horizontal
        if orient == 'h':
            # column range of sub area
            r1, r2 = 0, 0
            for line in lines[orient]:
                if line[0] == 0:
                    r1 = line[1]
                    continue
                r2 = line[0]
                b_top = []
                b_bottom = []
                for i in range(len(boundary[0])):
                    if r2 > boundary[0][i][0] >= r1:
                        b_top.append(boundary[0][i])
                for i in range(len(boundary[1])):
                    if r2 > boundary[1][i][0] >= r1:
                        b_bottom.append(boundary[1][i])

                b_left = [x for x in boundary[2]]  # (row_index, min column border)
                for i in range(len(b_left)):
                    if b_left[i][1] < r1:
                        b_left[i][1] = r1
                b_right = [x for x in boundary[3]]  # (row_index, max column border)
                for i in range(len(b_right)):
                    if b_right[i][1] > r2:
                        b_right[i][1] = r2

                boundary_rec.append([b_top, b_bottom, b_left, b_right])
                r1 = line[1]


# remove imgs that contain text
# def rm_text(org, corners, compo_class,
#             max_text_height=C.THRESHOLD_TEXT_MAX_HEIGHT, max_text_width=C.THRESHOLD_TEXT_MAX_WIDTH,
#             ocr_padding=C.OCR_PADDING, ocr_min_word_area=C.OCR_MIN_WORD_AREA, show=False):
#     """
#     Remove area that full of text
#     :param org: original image
#     :param corners: [(top_left, bottom_right)]
#                     -> top_left: (column_min, row_min)
#                     -> bottom_right: (column_max, row_max)
#     :param compo_class: classes of corners
#     :param max_text_height: Too large to be text
#     :param max_text_width: Too large to be text
#     :param ocr_padding: Padding for clipping
#     :param ocr_min_word_area: If too text area ratio is too large
#     :param show: Show or not
#     :return: corners without text objects
#     """
#     new_corners = []
#     new_class = []
#     for i in range(len(corners)):
#         corner = corners[i]
#         (top_left, bottom_right) = corner
#         (col_min, row_min) = top_left
#         (col_max, row_max) = bottom_right
#         height = row_max - row_min
#         width = col_max - col_min
#         # highly likely to be block or img if too large
#         if height > max_text_height and width > max_text_width:
#             new_corners.append(corner)
#             new_class.append(compo_class[i])
#         else:
#             row_min = row_min - ocr_padding if row_min - ocr_padding >= 0 else 0
#             row_max = row_max + ocr_padding if row_max + ocr_padding < org.shape[0] else org.shape[0]
#             col_min = col_min - ocr_padding if col_min - ocr_padding >= 0 else 0
#             col_max = col_max + ocr_padding if col_max + ocr_padding < org.shape[1] else org.shape[1]
#             # check if this area is text
#             clip = org[row_min: row_max, col_min: col_max]
#             if not ocr.is_text(clip, ocr_min_word_area, show=show):
#                 new_corners.append(corner)
#                 new_class.append(compo_class[i])
#     return new_corners, new_class


# def rm_img_in_compo(corners_img, corners_compo):
#     """
#     Remove imgs in component
#     """
#     corners_img_new = []
#     for img in corners_img:
#         is_nested = False
#         for compo in corners_compo:
#             if util.corner_relation(img, compo) == -1:
#                 is_nested = True
#                 break
#         if not is_nested:
#             corners_img_new.append(img)
#     return corners_img_new


# def block_or_compo(org, binary, corners,
#                    max_thickness=C.THRESHOLD_BLOCK_MAX_BORDER_THICKNESS, max_block_cross_points=C.THRESHOLD_BLOCK_MAX_CROSS_POINT,
#                    min_compo_w_h_ratio=C.THRESHOLD_UICOMPO_MIN_W_H_RATIO, max_compo_w_h_ratio=C.THRESHOLD_UICOMPO_MAX_W_H_RATIO,
#                    min_block_edge=C.THRESHOLD_BLOCK_MIN_EDGE_LENGTH):
#     """
#     Check if the objects are img components or just block
#     :param org: Original image
#     :param binary:  Binary image from pre-processing
#     :param corners: [(top_left, bottom_right)]
#                     -> top_left: (column_min, row_min)
#                     -> bottom_right: (column_max, row_max)
#     :param max_thickness: The max thickness of border of blocks
#     :param max_block_cross_points: Ratio of point of interaction
#     :return: corners of blocks and imgs
#     """
#     blocks = []
#     imgs = []
#     compos = []
#     for corner in corners:
#         (top_left, bottom_right) = corner
#         (col_min, row_min) = top_left
#         (col_max, row_max) = bottom_right
#         height = row_max - row_min
#         width = col_max - col_min
#
#         block = False
#         vacancy = [0, 0, 0, 0]
#         for i in range(1, max_thickness):
#             try:
#                 # top to bottom
#                 if vacancy[0] == 0 and (col_max - col_min - 2 * i) is not 0 and (
#                         np.sum(binary[row_min + i, col_min + i: col_max - i]) / 255) / (col_max - col_min - 2 * i) <= max_block_cross_points:
#                     vacancy[0] = 1
#                 # bottom to top
#                 if vacancy[1] == 0 and (col_max - col_min - 2 * i) is not 0 and (
#                         np.sum(binary[row_max - i, col_min + i: col_max - i]) / 255) / (col_max - col_min - 2 * i) <= max_block_cross_points:
#                     vacancy[1] = 1
#                 # left to right
#                 if vacancy[2] == 0 and (row_max - row_min - 2 * i) is not 0 and (
#                         np.sum(binary[row_min + i: row_max - i, col_min + i]) / 255) / (row_max - row_min - 2 * i) <= max_block_cross_points:
#                     vacancy[2] = 1
#                 # right to left
#                 if vacancy[3] == 0 and (row_max - row_min - 2 * i) is not 0 and (
#                         np.sum(binary[row_min + i: row_max - i, col_max - i]) / 255) / (row_max - row_min - 2 * i) <= max_block_cross_points:
#                     vacancy[3] = 1
#                 if np.sum(vacancy) == 4:
#                     block = True
#             except:
#                 pass
#
#         # too big to be UI components
#         if block:
#             if height > min_block_edge and width > min_block_edge:
#                 blocks.append(corner)
#             else:
#                 if min_compo_w_h_ratio < width / height < max_compo_w_h_ratio:
#                     compos.append(corner)
#         # filter out small objects
#         else:
#             if height > min_block_edge:
#                 imgs.append(corner)
#             else:
#                 if min_compo_w_h_ratio < width / height < max_compo_w_h_ratio:
#                     compos.append(corner)
#     return blocks, imgs, compos


# def compo_on_img(processing, org, binary, clf,
#                  compos_corner, compos_class):
#     """
#     Detect potential UI components inner img;
#     Only leave non-img
#     """
#     pad = 2
#     for i in range(len(compos_corner)):
#         if compos_class[i] != 'img':
#             continue
#         ((col_min, row_min), (col_max, row_max)) = compos_corner[i]
#         col_min = max(col_min - pad, 0)
#         col_max = min(col_max + pad, org.shape[1])
#         row_min = max(row_min - pad, 0)
#         row_max = min(row_max + pad, org.shape[0])
#         area = (col_max - col_min) * (row_max - row_min)
#         if area < 600:
#             continue
#
#         clip_org = org[row_min:row_max, col_min:col_max]
#         clip_bin_inv = pre.reverse_binary(binary[row_min:row_max, col_min:col_max])
#
#         compos_boundary_new, compos_corner_new, compos_class_new = processing(clip_org, clip_bin_inv, clf)
#         compos_corner_new = util.corner_cvt_relative_position(compos_corner_new, col_min, row_min)
#
#         assert len(compos_corner_new) == len(compos_class_new)
#
#         # only leave non-img elements
#         for i in range(len(compos_corner_new)):
#             ((col_min_new, row_min_new), (col_max_new, row_max_new)) = compos_corner_new[i]
#             area_new = (col_max_new - col_min_new) * (row_max_new - row_min_new)
#             if compos_class_new[i] != 'img' and area_new / area < 0.8:
#                 compos_corner.append(compos_corner_new[i])
#                 compos_class.append(compos_class_new[i])
#
#     return compos_corner, compos_class


# def strip_img(corners_compo, compos_class, corners_img):
#     """
#     Separate img from other compos
#     :return: compos without img
#     """
#     corners_compo_withuot_img = []
#     compo_class_withuot_img = []
#     for i in range(len(compos_class)):
#         if compos_class[i] == 'img':
#             corners_img.append(corners_compo[i])
#         else:
#             corners_compo_withuot_img.append(corners_compo[i])
#             compo_class_withuot_img.append(compos_class[i])
#     return corners_compo_withuot_img, compo_class_withuot_img


# def merge_corner(corners, compos_class, min_selected_IoU=C.THRESHOLD_MIN_IOU, is_merge_nested_same=True):
#     """
#     Calculate the Intersection over Overlap (IoU) and merge corners according to the value of IoU
#     :param is_merge_nested_same: if true, merge the nested corners with same class whatever the IoU is
#     :param corners: corners: [(top_left, bottom_right)]
#                             -> top_left: (column_min, row_min)
#                             -> bottom_right: (column_max, row_max)
#     :return: new corners
#     """
#     new_corners = []
#     new_class = []
#     for i in range(len(corners)):
#         is_intersected = False
#         for j in range(len(new_corners)):
#             r = util.corner_relation_nms(corners[i], new_corners[j], min_selected_IoU)
#             # r = util.corner_relation(corners[i], new_corners[j])
#             if is_merge_nested_same:
#                 if compos_class[i] == new_class[j]:
#                     # if corners[i] is in new_corners[j], ignore corners[i]
#                     if r == -1:
#                         is_intersected = True
#                         break
#                     # if new_corners[j] is in corners[i], replace new_corners[j] with corners[i]
#                     elif r == 1:
#                         is_intersected = True
#                         new_corners[j] = corners[i]
#
#             # if above IoU threshold, and corners[i] is in new_corners[j], ignore corners[i]
#             if r == -2:
#                 is_intersected = True
#                 break
#             # if above IoU threshold, and new_corners[j] is in corners[i], replace new_corners[j] with corners[i]
#             elif r == 2:
#                 is_intersected = True
#                 new_corners[j] = corners[i]
#                 new_class[j] = compos_class[i]
#
#             # containing and too small
#             elif r == -3:
#                 is_intersected = True
#                 break
#             elif r == 3:
#                 is_intersected = True
#                 new_corners[j] = corners[i]
#
#             # if [i] and [j] are overlapped but no containing relation, merge corners when same class
#             elif r == 4:
#                 is_intersected = True
#                 if compos_class[i] == new_class[j]:
#                     new_corners[j] = util.corner_merge_two_corners(corners[i], new_corners[j])
#
#         if not is_intersected:
#             new_corners.append(corners[i])
#             new_class.append(compos_class[i])
#     return new_corners, new_class


# def select_corner(corners, compos_class, class_name):
#     """
#     Select corners in given compo type
#     """
#     corners_wanted = []
#     for i in range(len(compos_class)):
#         if compos_class[i] == class_name:
#             corners_wanted.append(corners[i])
#     return corners_wanted


# def flood_fill_bfs(img, x_start, y_start, mark, grad_thresh):
#     def neighbor(x, y):
#         for i in range(x - 1, x + 2):
#             if i < 0 or i >= img.shape[0]: continue
#             for j in range(y - 1, y + 2):
#                 if j < 0 or j >= img.shape[1]: continue
#                 if mark[i, j] == 0 and abs(img[i, j] - img[x, y]) < grad_thresh:
#                     stack.append([i, j])
#                     mark[i, j] = 255
#
#     stack = [[x_start, y_start]]  # points waiting for inspection
#     region = [[x_start, y_start]]  # points of this connected region
#     mark[x_start, y_start] = 255  # drawing broad
#     while len(stack) > 0:
#         point = stack.pop()
#         region.append(point)
#         neighbor(point[0], point[1])
#     return region