File size: 20,207 Bytes
a383d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0246ff9
a383d0e
 
 
 
 
0246ff9
a383d0e
 
 
 
 
 
 
0246ff9
a383d0e
 
 
 
 
0246ff9
a383d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import cv2
import numpy as np

import detect_compo.lib_ip.ip_draw as draw
import detect_compo.lib_ip.ip_preprocessing as pre
from detect_compo.lib_ip.Component import Component
import detect_compo.lib_ip.Component as Compo
from config.CONFIG_UIED import Config
C = Config()


def merge_intersected_corner(compos, org, is_merge_contained_ele, max_gap=(0, 0), max_ele_height=25):
    '''
    :param is_merge_contained_ele: if true, merge compos nested in others
    :param max_gap: (horizontal_distance, vertical_distance) to be merge into one line/column
    :param max_ele_height: if higher than it, recognize the compo as text
    :return:
    '''
    changed = False
    new_compos = []
    Compo.compos_update(compos, org.shape)
    for i in range(len(compos)):
        merged = False
        cur_compo = compos[i]
        for j in range(len(new_compos)):
            relation = cur_compo.compo_relation(new_compos[j], max_gap)
            # print(relation)
            # draw.draw_bounding_box(org, [cur_compo, new_compos[j]], name='b-merge', show=True)
            # merge compo[i] to compo[j] if
            # 1. compo[j] contains compo[i]
            # 2. compo[j] intersects with compo[i] with certain iou
            # 3. is_merge_contained_ele and compo[j] is contained in compo[i]
            if relation == 1 or \
                    relation == 2 or \
                    (is_merge_contained_ele and relation == -1):
                # (relation == 2 and new_compos[j].height < max_ele_height and cur_compo.height < max_ele_height) or\

                new_compos[j].compo_merge(cur_compo)
                cur_compo = new_compos[j]
                # draw.draw_bounding_box(org, [new_compos[j]], name='a-merge', show=True)
                merged = True
                changed = True
                # break
        if not merged:
            new_compos.append(compos[i])

    if not changed:
        return compos
    else:
        return merge_intersected_corner(new_compos, org, is_merge_contained_ele, max_gap, max_ele_height)


def merge_intersected_compos(compos):
    changed = True
    while changed:
        changed = False
        temp_set = []
        for compo_a in compos:
            merged = False
            for compo_b in temp_set:
                if compo_a.compo_relation(compo_b) == 2:
                    compo_b.compo_merge(compo_a)
                    merged = True
                    changed = True
                    break
            if not merged:
                temp_set.append(compo_a)
        compos = temp_set.copy()
    return compos


def rm_contained_compos_not_in_block(compos):
    '''
    remove all components contained by others that are not Block
    '''
    marked = np.full(len(compos), False)
    for i in range(len(compos) - 1):
        for j in range(i + 1, len(compos)):
            relation = compos[i].compo_relation(compos[j])
            if relation == -1 and compos[j].category != 'Block':
                marked[i] = True
            if relation == 1 and compos[i].category != 'Block':
                marked[j] = True
    new_compos = []
    for i in range(len(marked)):
        if not marked[i]:
            new_compos.append(compos[i])
    return new_compos


def merge_text(compos, org_shape, max_word_gad=4, max_word_height=20):
    def is_text_line(compo_a, compo_b):
        (col_min_a, row_min_a, col_max_a, row_max_a) = compo_a.put_bbox()
        (col_min_b, row_min_b, col_max_b, row_max_b) = compo_b.put_bbox()

        col_min_s = max(col_min_a, col_min_b)
        col_max_s = min(col_max_a, col_max_b)
        row_min_s = max(row_min_a, row_min_b)
        row_max_s = min(row_max_a, row_max_b)

        # on the same line
        # if abs(row_min_a - row_min_b) < max_word_gad and abs(row_max_a - row_max_b) < max_word_gad:
        if row_min_s < row_max_s:
            # close distance
            if col_min_s < col_max_s or \
                    (0 < col_min_b - col_max_a < max_word_gad) or (0 < col_min_a - col_max_b < max_word_gad):
                return True
        return False

    changed = False
    new_compos = []
    row, col = org_shape[:2]
    for i in range(len(compos)):
        merged = False
        height = compos[i].height
        # ignore non-text
        # if height / row > max_word_height_ratio\
        #         or compos[i].category != 'Text':
        if height > max_word_height:
            new_compos.append(compos[i])
            continue
        for j in range(len(new_compos)):
            # if compos[j].category != 'Text':
            #     continue
            if is_text_line(compos[i], new_compos[j]):
                new_compos[j].compo_merge(compos[i])
                merged = True
                changed = True
                break
        if not merged:
            new_compos.append(compos[i])

    if not changed:
        return compos
    else:
        return merge_text(new_compos, org_shape)


def rm_top_or_bottom_corners(components, org_shape, top_bottom_height=C.THRESHOLD_TOP_BOTTOM_BAR):
    new_compos = []
    height, width = org_shape[:2]
    for compo in components:
        (column_min, row_min, column_max, row_max) = compo.put_bbox()
        # remove big ones
        # if (row_max - row_min) / height > 0.65 and (column_max - column_min) / width > 0.8:
        #     continue
        if not (row_max < height * top_bottom_height[0] or row_min > height * top_bottom_height[1]):
            new_compos.append(compo)
    return new_compos


def rm_line_v_h(binary, show=False, max_line_thickness=C.THRESHOLD_LINE_THICKNESS):
    def check_continuous_line(line, edge):
        continuous_length = 0
        line_start = -1
        for j, p in enumerate(line):
            if p > 0:
                if line_start == -1:
                    line_start = j
                continuous_length += 1
            elif continuous_length > 0:
                if continuous_length / edge > 0.6:
                    return [line_start, j]
                continuous_length = 0
                line_start = -1

        if continuous_length / edge > 0.6:
            return [line_start, len(line)]
        else:
            return None

    def extract_line_area(line, start_idx, flag='v'):
        for e, l in enumerate(line):
            if flag == 'v':
                map_line[start_idx + e, l[0]:l[1]] = binary[start_idx + e, l[0]:l[1]]

    map_line = np.zeros(binary.shape[:2], dtype=np.uint8)
    cv2.imshow('binary', binary)

    width = binary.shape[1]
    start_row = -1
    line_area = []
    for i, row in enumerate(binary):
        line_v = check_continuous_line(row, width)
        if line_v is not None:
            # new line
            if start_row == -1:
                start_row = i
                line_area = []
            line_area.append(line_v)
        else:
            # checking line
            if start_row != -1:
                if i - start_row < max_line_thickness:
                    # binary[start_row: i] = 0
                    # map_line[start_row: i] = binary[start_row: i]
                    print(line_area, start_row, i)
                    extract_line_area(line_area, start_row)
                start_row = -1

    height = binary.shape[0]
    start_col = -1
    for i in range(width):
        col = binary[:, i]
        line_h = check_continuous_line(col, height)
        if line_h is not None:
            # new line
            if start_col == -1:
                start_col = i
        else:
            # checking line
            if start_col != -1:
                if i - start_col < max_line_thickness:
                    # binary[:, start_col: i] = 0
                    map_line[:, start_col: i] = binary[:, start_col: i]
                start_col = -1

    binary -= map_line

    if show:
        cv2.imshow('no-line', binary)
        cv2.imshow('lines', map_line)
        cv2.waitKey()


def rm_line(binary,
            max_line_thickness=C.THRESHOLD_LINE_THICKNESS,
            min_line_length_ratio=C.THRESHOLD_LINE_MIN_LENGTH,
            show=False, wait_key=0):
    def is_valid_line(line):
        line_length = 0
        line_gap = 0
        for j in line:
            if j > 0:
                if line_gap > 5:
                    return False
                line_length += 1
                line_gap = 0
            elif line_length > 0:
                line_gap += 1
        if line_length / width > 0.95:
            return True
        return False

    height, width = binary.shape[:2]
    board = np.zeros(binary.shape[:2], dtype=np.uint8)

    start_row, end_row = -1, -1
    check_line = False
    check_gap = False
    for i, row in enumerate(binary):
        # line_ratio = (sum(row) / 255) / width
        # if line_ratio > 0.9:
        if is_valid_line(row):
            # new start: if it is checking a new line, mark this row as start
            if not check_line:
                start_row = i
                check_line = True
        else:
            # end the line
            if check_line:
                # thin enough to be a line, then start checking gap
                if i - start_row < max_line_thickness:
                    end_row = i
                    check_gap = True
                else:
                    start_row, end_row = -1, -1
                check_line = False
        # check gap
        if check_gap and i - end_row > max_line_thickness:
            binary[start_row: end_row] = 0
            start_row, end_row = -1, -1
            check_line = False
            check_gap = False

    if (check_line and (height - start_row) < max_line_thickness) or check_gap:
        binary[start_row: end_row] = 0

    if show:
        cv2.imshow('no-line binary', binary)
        if wait_key is not None:
            cv2.waitKey(wait_key)
        if wait_key == 0:
            cv2.destroyWindow('no-line binary')


def rm_noise_compos(compos):
    compos_new = []
    for compo in compos:
        if compo.category == 'Noise':
            continue
        compos_new.append(compo)
    return compos_new


def rm_noise_in_large_img(compos, org,
                      max_compo_scale=C.THRESHOLD_COMPO_MAX_SCALE):
    row, column = org.shape[:2]
    remain = np.full(len(compos), True)
    new_compos = []
    for compo in compos:
        if compo.category == 'Image':
            for i in compo.contain:
                remain[i] = False
    for i in range(len(remain)):
        if remain[i]:
            new_compos.append(compos[i])
    return new_compos


def detect_compos_in_img(compos, binary, org, max_compo_scale=C.THRESHOLD_COMPO_MAX_SCALE, show=False):
    compos_new = []
    row, column = binary.shape[:2]
    for compo in compos:
        if compo.category == 'Image':
            compo.compo_update_bbox_area()
            # org_clip = compo.compo_clipping(org)
            # bin_clip = pre.binarization(org_clip, show=show)
            bin_clip = compo.compo_clipping(binary)
            bin_clip = pre.reverse_binary(bin_clip, show=show)

            compos_rec, compos_nonrec = component_detection(bin_clip, test=False, step_h=10, step_v=10, rec_detect=True)
            for compo_rec in compos_rec:
                compo_rec.compo_relative_position(compo.bbox.col_min, compo.bbox.row_min)
                if compo_rec.bbox_area / compo.bbox_area < 0.8 and compo_rec.bbox.height > 20 and compo_rec.bbox.width > 20:
                    compos_new.append(compo_rec)
                    # draw.draw_bounding_box(org, [compo_rec], show=True)

            # compos_inner = component_detection(bin_clip, rec_detect=False)
            # for compo_inner in compos_inner:
            #     compo_inner.compo_relative_position(compo.bbox.col_min, compo.bbox.row_min)
            #     draw.draw_bounding_box(org, [compo_inner], show=True)
            #     if compo_inner.bbox_area / compo.bbox_area < 0.8:
            #         compos_new.append(compo_inner)
    compos += compos_new


def compo_filter(compos, min_area, img_shape):
    max_height = img_shape[0] * 0.8
    compos_new = []
    for compo in compos:
        if compo.area < min_area:
            continue
        if compo.height > max_height:
            continue
        ratio_h = compo.width / compo.height
        ratio_w = compo.height / compo.width
        if ratio_h > 50 or ratio_w > 40 or \
                (min(compo.height, compo.width) < 8 and max(ratio_h, ratio_w) > 10):
            continue
        compos_new.append(compo)
    return compos_new


def is_block(clip, thread=0.15):
    '''
    Block is a rectangle border enclosing a group of compos (consider it as a wireframe)
    Check if a compo is block by checking if the inner side of its border is blank
    '''
    side = 4  # scan 4 lines inner forward each border
    # top border - scan top down
    blank_count = 0
    for i in range(1, 5):
        if sum(clip[side + i].astype(np.int64)) / 255 > thread * clip.shape[1]:
            blank_count += 1
    if blank_count > 2: return False
    # left border - scan left to right
    blank_count = 0
    for i in range(1, 5):
        if sum(clip[:, side + i].astype(np.int64)) / 255 > thread * clip.shape[0]:
            blank_count += 1
    if blank_count > 2: return False

    side = -4
    # bottom border - scan bottom up
    blank_count = 0
    for i in range(-1, -5, -1):
        if sum(clip[side + i].astype(np.int64)) / 255 > thread * clip.shape[1]:
            blank_count += 1
    if blank_count > 2: return False
    # right border - scan right to left
    blank_count = 0
    for i in range(-1, -5, -1):
        if sum(clip[:, side + i].astype(np.int64)) / 255 > thread * clip.shape[0]:
            blank_count += 1
    if blank_count > 2: return False
    return True


def compo_block_recognition(binary, compos, block_side_length=0.15):
    height, width = binary.shape
    for compo in compos:
        if compo.height / height > block_side_length and compo.width / width > block_side_length:
            clip = compo.compo_clipping(binary)
            if is_block(clip):
                compo.category = 'Block'


# take the binary image as input
# calculate the connected regions -> get the bounding boundaries of them -> check if those regions are rectangles
# return all boundaries and boundaries of rectangles
def component_detection(binary, min_obj_area,
                        line_thickness=C.THRESHOLD_LINE_THICKNESS,
                        min_rec_evenness=C.THRESHOLD_REC_MIN_EVENNESS,
                        max_dent_ratio=C.THRESHOLD_REC_MAX_DENT_RATIO,
                        step_h = 5, step_v = 2,
                        rec_detect=False, show=False, test=False):
    """
    :param binary: Binary image from pre-processing
    :param min_obj_area: If not pass then ignore the small object
    :param min_obj_perimeter: If not pass then ignore the small object
    :param line_thickness: If not pass then ignore the slim object
    :param min_rec_evenness: If not pass then this object cannot be rectangular
    :param max_dent_ratio: If not pass then this object cannot be rectangular
    :return: boundary: [top, bottom, left, right]
                        -> up, bottom: list of (column_index, min/max row border)
                        -> left, right: list of (row_index, min/max column border) detect range of each row
    """
    mask = np.zeros((binary.shape[0] + 2, binary.shape[1] + 2), dtype=np.uint8)
    compos_all = []
    compos_rec = []
    compos_nonrec = []
    row, column = binary.shape[0], binary.shape[1]
    for i in range(0, row, step_h):
        for j in range(i % 2, column, step_v):
            if binary[i, j] == 255 and mask[i, j] == 0:
                # get connected area
                # region = util.boundary_bfs_connected_area(binary, i, j, mask)

                mask_copy = mask.copy()
                ff = cv2.floodFill(binary, mask, (j, i), None, 0, 0, cv2.FLOODFILL_MASK_ONLY)
                if ff[0] < min_obj_area: continue
                mask_copy = mask - mask_copy
                region = np.reshape(cv2.findNonZero(mask_copy[1:-1, 1:-1]), (-1, 2))
                region = [(p[1], p[0]) for p in region]

                # filter out some compos
                component = Component(region, binary.shape)
                # calculate the boundary of the connected area
                # ignore small area
                if component.width <= 3 or component.height <= 3:
                    continue
                # check if it is line by checking the length of edges
                # if component.compo_is_line(line_thickness):
                #     continue

                if test:
                    print('Area:%d' % (len(region)))
                    draw.draw_boundary([component], binary.shape, show=True)

                compos_all.append(component)

                if rec_detect:
                    # rectangle check
                    if component.compo_is_rectangle(min_rec_evenness, max_dent_ratio):
                        component.rect_ = True
                        compos_rec.append(component)
                    else:
                        component.rect_ = False
                        compos_nonrec.append(component)

                if show:
                    print('Area:%d' % (len(region)))
                    draw.draw_boundary(compos_all, binary.shape, show=True)

    # draw.draw_boundary(compos_all, binary.shape, show=True)
    if rec_detect:
        return compos_rec, compos_nonrec
    else:
        return compos_all


def nested_components_detection(grey, org, grad_thresh,
                   show=False, write_path=None,
                   step_h=10, step_v=10,
                   line_thickness=C.THRESHOLD_LINE_THICKNESS,
                   min_rec_evenness=C.THRESHOLD_REC_MIN_EVENNESS,
                   max_dent_ratio=C.THRESHOLD_REC_MAX_DENT_RATIO):
    '''
    :param grey: grey-scale of original image
    :return: corners: list of [(top_left, bottom_right)]
                        -> top_left: (column_min, row_min)
                        -> bottom_right: (column_max, row_max)
    '''
    compos = []
    mask = np.zeros((grey.shape[0]+2, grey.shape[1]+2), dtype=np.uint8)
    broad = np.zeros((grey.shape[0], grey.shape[1], 3), dtype=np.uint8)
    broad_all = broad.copy()

    row, column = grey.shape[0], grey.shape[1]
    for x in range(0, row, step_h):
        for y in range(0, column, step_v):
            if mask[x, y] == 0:
                # region = flood_fill_bfs(grey, x, y, mask)

                # flood fill algorithm to get background (layout block)
                mask_copy = mask.copy()
                ff = cv2.floodFill(grey, mask, (y, x), None, grad_thresh, grad_thresh, cv2.FLOODFILL_MASK_ONLY)
                # ignore small regions
                if ff[0] < 500: continue
                mask_copy = mask - mask_copy
                region = np.reshape(cv2.findNonZero(mask_copy[1:-1, 1:-1]), (-1, 2))
                region = [(p[1], p[0]) for p in region]

                compo = Component(region, grey.shape)
                # draw.draw_region(region, broad_all)
                # if block.height < 40 and block.width < 40:
                #     continue
                if compo.height < 30:
                    continue

                # print(block.area / (row * column))
                if compo.area / (row * column) > 0.9:
                    continue
                elif compo.area / (row * column) > 0.7:
                    compo.redundant = True

                # get the boundary of this region
                # ignore lines
                if compo.compo_is_line(line_thickness):
                    continue
                # ignore non-rectangle as blocks must be rectangular
                if not compo.compo_is_rectangle(min_rec_evenness, max_dent_ratio):
                    continue
                # if block.height/row < min_block_height_ratio:
                #     continue
                compos.append(compo)
                # draw.draw_region(region, broad)
    if show:
        cv2.imshow('flood-fill all', broad_all)
        cv2.imshow('block', broad)
        cv2.waitKey()
    if write_path is not None:
        cv2.imwrite(write_path, broad)
    return compos