Spaces:
Running
Running
File size: 20,207 Bytes
a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e 0246ff9 a383d0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
import cv2
import numpy as np
import detect_compo.lib_ip.ip_draw as draw
import detect_compo.lib_ip.ip_preprocessing as pre
from detect_compo.lib_ip.Component import Component
import detect_compo.lib_ip.Component as Compo
from config.CONFIG_UIED import Config
C = Config()
def merge_intersected_corner(compos, org, is_merge_contained_ele, max_gap=(0, 0), max_ele_height=25):
'''
:param is_merge_contained_ele: if true, merge compos nested in others
:param max_gap: (horizontal_distance, vertical_distance) to be merge into one line/column
:param max_ele_height: if higher than it, recognize the compo as text
:return:
'''
changed = False
new_compos = []
Compo.compos_update(compos, org.shape)
for i in range(len(compos)):
merged = False
cur_compo = compos[i]
for j in range(len(new_compos)):
relation = cur_compo.compo_relation(new_compos[j], max_gap)
# print(relation)
# draw.draw_bounding_box(org, [cur_compo, new_compos[j]], name='b-merge', show=True)
# merge compo[i] to compo[j] if
# 1. compo[j] contains compo[i]
# 2. compo[j] intersects with compo[i] with certain iou
# 3. is_merge_contained_ele and compo[j] is contained in compo[i]
if relation == 1 or \
relation == 2 or \
(is_merge_contained_ele and relation == -1):
# (relation == 2 and new_compos[j].height < max_ele_height and cur_compo.height < max_ele_height) or\
new_compos[j].compo_merge(cur_compo)
cur_compo = new_compos[j]
# draw.draw_bounding_box(org, [new_compos[j]], name='a-merge', show=True)
merged = True
changed = True
# break
if not merged:
new_compos.append(compos[i])
if not changed:
return compos
else:
return merge_intersected_corner(new_compos, org, is_merge_contained_ele, max_gap, max_ele_height)
def merge_intersected_compos(compos):
changed = True
while changed:
changed = False
temp_set = []
for compo_a in compos:
merged = False
for compo_b in temp_set:
if compo_a.compo_relation(compo_b) == 2:
compo_b.compo_merge(compo_a)
merged = True
changed = True
break
if not merged:
temp_set.append(compo_a)
compos = temp_set.copy()
return compos
def rm_contained_compos_not_in_block(compos):
'''
remove all components contained by others that are not Block
'''
marked = np.full(len(compos), False)
for i in range(len(compos) - 1):
for j in range(i + 1, len(compos)):
relation = compos[i].compo_relation(compos[j])
if relation == -1 and compos[j].category != 'Block':
marked[i] = True
if relation == 1 and compos[i].category != 'Block':
marked[j] = True
new_compos = []
for i in range(len(marked)):
if not marked[i]:
new_compos.append(compos[i])
return new_compos
def merge_text(compos, org_shape, max_word_gad=4, max_word_height=20):
def is_text_line(compo_a, compo_b):
(col_min_a, row_min_a, col_max_a, row_max_a) = compo_a.put_bbox()
(col_min_b, row_min_b, col_max_b, row_max_b) = compo_b.put_bbox()
col_min_s = max(col_min_a, col_min_b)
col_max_s = min(col_max_a, col_max_b)
row_min_s = max(row_min_a, row_min_b)
row_max_s = min(row_max_a, row_max_b)
# on the same line
# if abs(row_min_a - row_min_b) < max_word_gad and abs(row_max_a - row_max_b) < max_word_gad:
if row_min_s < row_max_s:
# close distance
if col_min_s < col_max_s or \
(0 < col_min_b - col_max_a < max_word_gad) or (0 < col_min_a - col_max_b < max_word_gad):
return True
return False
changed = False
new_compos = []
row, col = org_shape[:2]
for i in range(len(compos)):
merged = False
height = compos[i].height
# ignore non-text
# if height / row > max_word_height_ratio\
# or compos[i].category != 'Text':
if height > max_word_height:
new_compos.append(compos[i])
continue
for j in range(len(new_compos)):
# if compos[j].category != 'Text':
# continue
if is_text_line(compos[i], new_compos[j]):
new_compos[j].compo_merge(compos[i])
merged = True
changed = True
break
if not merged:
new_compos.append(compos[i])
if not changed:
return compos
else:
return merge_text(new_compos, org_shape)
def rm_top_or_bottom_corners(components, org_shape, top_bottom_height=C.THRESHOLD_TOP_BOTTOM_BAR):
new_compos = []
height, width = org_shape[:2]
for compo in components:
(column_min, row_min, column_max, row_max) = compo.put_bbox()
# remove big ones
# if (row_max - row_min) / height > 0.65 and (column_max - column_min) / width > 0.8:
# continue
if not (row_max < height * top_bottom_height[0] or row_min > height * top_bottom_height[1]):
new_compos.append(compo)
return new_compos
def rm_line_v_h(binary, show=False, max_line_thickness=C.THRESHOLD_LINE_THICKNESS):
def check_continuous_line(line, edge):
continuous_length = 0
line_start = -1
for j, p in enumerate(line):
if p > 0:
if line_start == -1:
line_start = j
continuous_length += 1
elif continuous_length > 0:
if continuous_length / edge > 0.6:
return [line_start, j]
continuous_length = 0
line_start = -1
if continuous_length / edge > 0.6:
return [line_start, len(line)]
else:
return None
def extract_line_area(line, start_idx, flag='v'):
for e, l in enumerate(line):
if flag == 'v':
map_line[start_idx + e, l[0]:l[1]] = binary[start_idx + e, l[0]:l[1]]
map_line = np.zeros(binary.shape[:2], dtype=np.uint8)
cv2.imshow('binary', binary)
width = binary.shape[1]
start_row = -1
line_area = []
for i, row in enumerate(binary):
line_v = check_continuous_line(row, width)
if line_v is not None:
# new line
if start_row == -1:
start_row = i
line_area = []
line_area.append(line_v)
else:
# checking line
if start_row != -1:
if i - start_row < max_line_thickness:
# binary[start_row: i] = 0
# map_line[start_row: i] = binary[start_row: i]
print(line_area, start_row, i)
extract_line_area(line_area, start_row)
start_row = -1
height = binary.shape[0]
start_col = -1
for i in range(width):
col = binary[:, i]
line_h = check_continuous_line(col, height)
if line_h is not None:
# new line
if start_col == -1:
start_col = i
else:
# checking line
if start_col != -1:
if i - start_col < max_line_thickness:
# binary[:, start_col: i] = 0
map_line[:, start_col: i] = binary[:, start_col: i]
start_col = -1
binary -= map_line
if show:
cv2.imshow('no-line', binary)
cv2.imshow('lines', map_line)
cv2.waitKey()
def rm_line(binary,
max_line_thickness=C.THRESHOLD_LINE_THICKNESS,
min_line_length_ratio=C.THRESHOLD_LINE_MIN_LENGTH,
show=False, wait_key=0):
def is_valid_line(line):
line_length = 0
line_gap = 0
for j in line:
if j > 0:
if line_gap > 5:
return False
line_length += 1
line_gap = 0
elif line_length > 0:
line_gap += 1
if line_length / width > 0.95:
return True
return False
height, width = binary.shape[:2]
board = np.zeros(binary.shape[:2], dtype=np.uint8)
start_row, end_row = -1, -1
check_line = False
check_gap = False
for i, row in enumerate(binary):
# line_ratio = (sum(row) / 255) / width
# if line_ratio > 0.9:
if is_valid_line(row):
# new start: if it is checking a new line, mark this row as start
if not check_line:
start_row = i
check_line = True
else:
# end the line
if check_line:
# thin enough to be a line, then start checking gap
if i - start_row < max_line_thickness:
end_row = i
check_gap = True
else:
start_row, end_row = -1, -1
check_line = False
# check gap
if check_gap and i - end_row > max_line_thickness:
binary[start_row: end_row] = 0
start_row, end_row = -1, -1
check_line = False
check_gap = False
if (check_line and (height - start_row) < max_line_thickness) or check_gap:
binary[start_row: end_row] = 0
if show:
cv2.imshow('no-line binary', binary)
if wait_key is not None:
cv2.waitKey(wait_key)
if wait_key == 0:
cv2.destroyWindow('no-line binary')
def rm_noise_compos(compos):
compos_new = []
for compo in compos:
if compo.category == 'Noise':
continue
compos_new.append(compo)
return compos_new
def rm_noise_in_large_img(compos, org,
max_compo_scale=C.THRESHOLD_COMPO_MAX_SCALE):
row, column = org.shape[:2]
remain = np.full(len(compos), True)
new_compos = []
for compo in compos:
if compo.category == 'Image':
for i in compo.contain:
remain[i] = False
for i in range(len(remain)):
if remain[i]:
new_compos.append(compos[i])
return new_compos
def detect_compos_in_img(compos, binary, org, max_compo_scale=C.THRESHOLD_COMPO_MAX_SCALE, show=False):
compos_new = []
row, column = binary.shape[:2]
for compo in compos:
if compo.category == 'Image':
compo.compo_update_bbox_area()
# org_clip = compo.compo_clipping(org)
# bin_clip = pre.binarization(org_clip, show=show)
bin_clip = compo.compo_clipping(binary)
bin_clip = pre.reverse_binary(bin_clip, show=show)
compos_rec, compos_nonrec = component_detection(bin_clip, test=False, step_h=10, step_v=10, rec_detect=True)
for compo_rec in compos_rec:
compo_rec.compo_relative_position(compo.bbox.col_min, compo.bbox.row_min)
if compo_rec.bbox_area / compo.bbox_area < 0.8 and compo_rec.bbox.height > 20 and compo_rec.bbox.width > 20:
compos_new.append(compo_rec)
# draw.draw_bounding_box(org, [compo_rec], show=True)
# compos_inner = component_detection(bin_clip, rec_detect=False)
# for compo_inner in compos_inner:
# compo_inner.compo_relative_position(compo.bbox.col_min, compo.bbox.row_min)
# draw.draw_bounding_box(org, [compo_inner], show=True)
# if compo_inner.bbox_area / compo.bbox_area < 0.8:
# compos_new.append(compo_inner)
compos += compos_new
def compo_filter(compos, min_area, img_shape):
max_height = img_shape[0] * 0.8
compos_new = []
for compo in compos:
if compo.area < min_area:
continue
if compo.height > max_height:
continue
ratio_h = compo.width / compo.height
ratio_w = compo.height / compo.width
if ratio_h > 50 or ratio_w > 40 or \
(min(compo.height, compo.width) < 8 and max(ratio_h, ratio_w) > 10):
continue
compos_new.append(compo)
return compos_new
def is_block(clip, thread=0.15):
'''
Block is a rectangle border enclosing a group of compos (consider it as a wireframe)
Check if a compo is block by checking if the inner side of its border is blank
'''
side = 4 # scan 4 lines inner forward each border
# top border - scan top down
blank_count = 0
for i in range(1, 5):
if sum(clip[side + i].astype(np.int64)) / 255 > thread * clip.shape[1]:
blank_count += 1
if blank_count > 2: return False
# left border - scan left to right
blank_count = 0
for i in range(1, 5):
if sum(clip[:, side + i].astype(np.int64)) / 255 > thread * clip.shape[0]:
blank_count += 1
if blank_count > 2: return False
side = -4
# bottom border - scan bottom up
blank_count = 0
for i in range(-1, -5, -1):
if sum(clip[side + i].astype(np.int64)) / 255 > thread * clip.shape[1]:
blank_count += 1
if blank_count > 2: return False
# right border - scan right to left
blank_count = 0
for i in range(-1, -5, -1):
if sum(clip[:, side + i].astype(np.int64)) / 255 > thread * clip.shape[0]:
blank_count += 1
if blank_count > 2: return False
return True
def compo_block_recognition(binary, compos, block_side_length=0.15):
height, width = binary.shape
for compo in compos:
if compo.height / height > block_side_length and compo.width / width > block_side_length:
clip = compo.compo_clipping(binary)
if is_block(clip):
compo.category = 'Block'
# take the binary image as input
# calculate the connected regions -> get the bounding boundaries of them -> check if those regions are rectangles
# return all boundaries and boundaries of rectangles
def component_detection(binary, min_obj_area,
line_thickness=C.THRESHOLD_LINE_THICKNESS,
min_rec_evenness=C.THRESHOLD_REC_MIN_EVENNESS,
max_dent_ratio=C.THRESHOLD_REC_MAX_DENT_RATIO,
step_h = 5, step_v = 2,
rec_detect=False, show=False, test=False):
"""
:param binary: Binary image from pre-processing
:param min_obj_area: If not pass then ignore the small object
:param min_obj_perimeter: If not pass then ignore the small object
:param line_thickness: If not pass then ignore the slim object
:param min_rec_evenness: If not pass then this object cannot be rectangular
:param max_dent_ratio: If not pass then this object cannot be rectangular
:return: boundary: [top, bottom, left, right]
-> up, bottom: list of (column_index, min/max row border)
-> left, right: list of (row_index, min/max column border) detect range of each row
"""
mask = np.zeros((binary.shape[0] + 2, binary.shape[1] + 2), dtype=np.uint8)
compos_all = []
compos_rec = []
compos_nonrec = []
row, column = binary.shape[0], binary.shape[1]
for i in range(0, row, step_h):
for j in range(i % 2, column, step_v):
if binary[i, j] == 255 and mask[i, j] == 0:
# get connected area
# region = util.boundary_bfs_connected_area(binary, i, j, mask)
mask_copy = mask.copy()
ff = cv2.floodFill(binary, mask, (j, i), None, 0, 0, cv2.FLOODFILL_MASK_ONLY)
if ff[0] < min_obj_area: continue
mask_copy = mask - mask_copy
region = np.reshape(cv2.findNonZero(mask_copy[1:-1, 1:-1]), (-1, 2))
region = [(p[1], p[0]) for p in region]
# filter out some compos
component = Component(region, binary.shape)
# calculate the boundary of the connected area
# ignore small area
if component.width <= 3 or component.height <= 3:
continue
# check if it is line by checking the length of edges
# if component.compo_is_line(line_thickness):
# continue
if test:
print('Area:%d' % (len(region)))
draw.draw_boundary([component], binary.shape, show=True)
compos_all.append(component)
if rec_detect:
# rectangle check
if component.compo_is_rectangle(min_rec_evenness, max_dent_ratio):
component.rect_ = True
compos_rec.append(component)
else:
component.rect_ = False
compos_nonrec.append(component)
if show:
print('Area:%d' % (len(region)))
draw.draw_boundary(compos_all, binary.shape, show=True)
# draw.draw_boundary(compos_all, binary.shape, show=True)
if rec_detect:
return compos_rec, compos_nonrec
else:
return compos_all
def nested_components_detection(grey, org, grad_thresh,
show=False, write_path=None,
step_h=10, step_v=10,
line_thickness=C.THRESHOLD_LINE_THICKNESS,
min_rec_evenness=C.THRESHOLD_REC_MIN_EVENNESS,
max_dent_ratio=C.THRESHOLD_REC_MAX_DENT_RATIO):
'''
:param grey: grey-scale of original image
:return: corners: list of [(top_left, bottom_right)]
-> top_left: (column_min, row_min)
-> bottom_right: (column_max, row_max)
'''
compos = []
mask = np.zeros((grey.shape[0]+2, grey.shape[1]+2), dtype=np.uint8)
broad = np.zeros((grey.shape[0], grey.shape[1], 3), dtype=np.uint8)
broad_all = broad.copy()
row, column = grey.shape[0], grey.shape[1]
for x in range(0, row, step_h):
for y in range(0, column, step_v):
if mask[x, y] == 0:
# region = flood_fill_bfs(grey, x, y, mask)
# flood fill algorithm to get background (layout block)
mask_copy = mask.copy()
ff = cv2.floodFill(grey, mask, (y, x), None, grad_thresh, grad_thresh, cv2.FLOODFILL_MASK_ONLY)
# ignore small regions
if ff[0] < 500: continue
mask_copy = mask - mask_copy
region = np.reshape(cv2.findNonZero(mask_copy[1:-1, 1:-1]), (-1, 2))
region = [(p[1], p[0]) for p in region]
compo = Component(region, grey.shape)
# draw.draw_region(region, broad_all)
# if block.height < 40 and block.width < 40:
# continue
if compo.height < 30:
continue
# print(block.area / (row * column))
if compo.area / (row * column) > 0.9:
continue
elif compo.area / (row * column) > 0.7:
compo.redundant = True
# get the boundary of this region
# ignore lines
if compo.compo_is_line(line_thickness):
continue
# ignore non-rectangle as blocks must be rectangular
if not compo.compo_is_rectangle(min_rec_evenness, max_dent_ratio):
continue
# if block.height/row < min_block_height_ratio:
# continue
compos.append(compo)
# draw.draw_region(region, broad)
if show:
cv2.imshow('flood-fill all', broad_all)
cv2.imshow('block', broad)
cv2.waitKey()
if write_path is not None:
cv2.imwrite(write_path, broad)
return compos
|