import cv2 import numpy as np from os.path import join as pjoin import glob from tqdm import tqdm from Config import Config cfg = Config() class Data: def __init__(self): self.data_num = 0 self.images = [] self.labels = [] self.X_train, self.Y_train = None, None self.X_test, self.Y_test = None, None self.image_shape = cfg.image_shape self.class_number = cfg.class_number self.class_map = cfg.class_map self.DATA_PATH = cfg.DATA_PATH def load_data(self, resize=True, shape=None, max_number=1000000): # if customize shape if shape is not None: self.image_shape = shape else: shape = self.image_shape # load data for p in glob.glob(pjoin(self.DATA_PATH, '*')): print("*** Loading components of %s: %d ***" %(p.split('\\')[-1], int(len(glob.glob(pjoin(p, '*.png')))))) label = self.class_map.index(p.split('\\')[-1]) # map to index of classes for i, image_path in enumerate(tqdm(glob.glob(pjoin(p, '*.png'))[:max_number])): image = cv2.imread(image_path) if resize: image = cv2.resize(image, shape[:2]) self.images.append(image) self.labels.append(label) assert len(self.images) == len(self.labels) self.data_num = len(self.images) print('%d Data Loaded' % self.data_num) def generate_training_data(self, train_data_ratio=0.8): # transfer int into c dimensions one-hot array def expand(label, class_number): # return y : (num_class, num_samples) y = np.eye(class_number)[label] y = np.squeeze(y) return y # reshuffle np.random.seed(0) self.images = np.random.permutation(self.images) np.random.seed(0) self.labels = np.random.permutation(self.labels) Y = expand(self.labels, self.class_number) # separate dataset cut = int(train_data_ratio * self.data_num) self.X_train = (self.images[:cut] / 255).astype('float32') self.X_test = (self.images[cut:] / 255).astype('float32') self.Y_train = Y[:cut] self.Y_test = Y[cut:] print('X_train:%d, Y_train:%d' % (len(self.X_train), len(self.Y_train))) print('X_test:%d, Y_test:%d' % (len(self.X_test), len(self.Y_test)))